

PKZIP®/SecureZIP™ for iSeries

User’s Guide
SZIU-V8R2000

PKWARE Inc.

PKWARE Inc.
648 N Plankinton Avenue, Suite 220
Milwaukee, WI 53203

Sales: 937-847-2374
Sales - Email: pksales@pkware.com
Support: 937-847-2687
Support - http://www.pkware.com/business_and_developers/support
Fax: 414-289-9789
Web Site: http://www.pkware.com

8.2 Edition (2005)

SecureZIP™ for iSeries, PKZIP® for iSeries, PKZIP for MVS, SecureZIP for zSeries, PKZIP for
zSeries, PKZIP for OS/400, PKZIP for UNIX, and PKZIP for Windows are just a few of the
many members in the PKZIP® family. PKWARE, Inc. would like to thank all the individuals and
companies -- including our customers, resellers, distributors, and technology partners -- who
have helped make PKZIP the industry standard for trusted ZIP solutions. PKZIP enables our
customers to efficiently and securely transmit and store information across systems of all
sizes, ranging from desktops to mainframes.

This edition applies to the following PKWARE, Inc. licensed programs:

PKZIP for iSeries (Version 8, Release 2, 2005)
SecureZIP for iSeries (Version 8, Release 2, 2005)
SecureZIP for iSeries Reader (Version 8, Release 2, 2005)
SecureZIP for iSeries SecureLink (Version 8, Release 2, 2005)

PKZIP is a registered trademark of PKWARE Inc. SecureZIP is a trademark of PKWARE Inc.
Other product names mentioned in this manual may be a trademark or registered trademarks
of their respective companies and are hereby acknowledged.

Any reference to licensed programs or other material, belonging to any company, is not
intended to state or imply that such programs or material are available or may be used. The
copyright in this work is owned by PKWARE, Inc., and the document is issued in confidence for
the purpose only for which it is supplied. It must not be reproduced in whole or in part or used
for tendering purposes except under an agreement or with the consent in writing of PKWARE,
Inc., and then only on condition that this notice is included in any such reproduction. No
information as to the contents or subject matter of this document or any part thereof either
directly or indirectly arising there from shall be given or communicated in any manner
whatsoever to a third party being an individual firm or company or any employee thereof
without the prior consent in writing of PKWARE, Inc.

Copyright © 1989 - 2005 PKWARE, Inc. All rights reserved.

http://www.pkware.com/business_and_developers/support

 iii

Contents

PREFACE... 1
About this Manual .. 1
Conventions Used in this Manual .. 2
Related Publications.. 2
Related IBM Publications .. 3
Related Information on the Internet ... 3
Release Summary .. 4

New Products ... 4
New Features ... 4
New Commands... 5
Command Changes & Defaults.. 5
Migration Considerations for Version 8.2 ... 5

User Help and Contact Information.. 6

1 GETTING STARTED .. 7
PKZIP and PKUNZIP Commands.. 7
Basic Features of PKZIPi ... 7
Initializing the License... 8

Evaluation Period ... 8
Release Licensing .. 8
Show System Information .. 9
Applying a License Key or Authorization Code .. 9
Reporting the PKZIPi for iSeries License ... 11

PKZIP and SecureZIP for iSeries Grace Period .. 11
Invoking PKZIPi Services .. 12
PKZIPi Differences from other Platforms .. 12
Use of SAVF Method.. 13
Data Compression ... 13
ZIP Archives ... 14
Cyclic Redundancy Check .. 15

iv

Encryption .. 15
File Selection and Name Processing ... 15

Primary File Selection Inputs.. 16
File Exclusion Inputs... 18
Input ZIP Archive Files ... 18
SPOOL File Selecting .. 18

Large Files Considerations... 18
Large File Support Summary ... 18
Large File Support File Capacities ... 19

Cross Platform Compatibility ... 20
ZIP File Format Specification.. 21
PKZIP/SecureZIP for iSeries Restrictions ... 21

2 INTRODUCTION TO DATA SECURITY... 23
Encryption .. 23
Authentication .. 24

Data Integrity .. 24
Digital Signature Validation .. 24
Digital Signature Source Validation.. 25

Public-Key Infrastructure and Digital Certificates.. 25
Public-Key Infrastructure (PKI)... 25
X.509 .. 26
Digital Certificates... 26
Certificate Authority (CA).. 26
Private Key ... 26
Public Key... 27
Certificate Authority and Root Certificates ... 27

Types of Encryption Algorithms .. 27
FIPS 46-3, Data Encryption Standard (DES) ... 27
Triple DES Algorithm (3DES) ... 27
Advanced Encryption Standard (AES) ... 28
Comparison of the 3DES and AES Algorithms .. 28
RC4 .. 29

Key Management.. 29
Passwords and PINS ... 30
Recipient Based Encryption ... 30
Integrity of Public and Private Keys... 30
Data Encryption.. 31

Operating System Levels ... 31
Windows Compatibility ... 31

User Encryption Examples ... 32
Zip Compress File(s) and Write to an Archive File... 32
Display the contents of an Archive File .. 34
Incorrect Password Use ... 35

 v

3 ZIP FILES ... 36
“Old” ZIP Archive... 37
“Temporary” Archive File ... 37
“New” ZIP Archive ... 38
Self-Extracting Archive.. 38
Data Format - Text Records vs. Binary Records .. 41
File Attributes ... 42
PC Shared Drives Format.. 43

4 FILE EXTRACTION PROCESS ... 44
Extracting Files to the QSYS Library File System .. 44

Authority Settings ... 45
Extracting Files to the IFS... 46

Path Considerations ... 46
Changing the path(s) .. 46
File Type Considerations.. 46

Extracting zSeries Variable Length Records (RDW/ZDW)................................... 47
Extracting Spool Files ... 48

5 ISERIES FILE PROCESSING SUPPORT.. 51
QSYS (Library File System) .. 51

QSYS Summary ... 51
IFS (Integrated File System).. 52

Directories and Current Directory... 52
Path and Path Names .. 52
Stream Files ... 53
Other IFS Objects... 53
File Systems in the IFS .. 53
Document Library Services File System (QDLS) ... 54
Optical File System (QOPT)... 55
Using QSYS.LIB via the Integrated File System Interface..................................... 56
IFS Summary.. 57

SAVF.. 57
Compressing a SAVF file ... 57
Extracting Records into a SAVF file ... 58
Overwriting Current SAVF File ... 58

Compressing Spool Files.. 58

6 ISERIES PKWARE SAVE/RESTORE APPLICATION FEATURE (IPSRA) 60
How iSeries Save/Restore Application Works .. 60
Save/Restore Command Overview... 61

File Name in Archive .. 62
Extended Data in Archive... 62
iPSRA Restrictions ... 63
Use of OUTPUT and OUTFILE with the Save Commands.................................... 64

vi

How to Use the Save Application Feature ... 64
How to Use the Restore Application Feature ... 65
Database considerations for save and restore... 66

iPSRA Examples .. 66

7 PKZIP COMMAND ... 72
PKZIP Command Summary with Parameter Keyword Format............................ 72
PKZIP Command Keyword Details... 78

8 PKUNZIP COMMAND .. 119
PKUNZIP Command Summary with Parameter Keyword Format..................... 119
PKUNZIP Command Keyword Details.. 123

9 PKQRYCDB “QUERY CERT DATABASE” COMMAND 144
PKQRYCDB Command Summary with Parameter Keyword Format............... 144
PKQRYCDB Command Keyword Details... 144

10 PROCESSING WITH GZIP... 150
Introduction to GZIP (GNU zip)... 150
GZIP Archive Files Used By PKZIP/SecureZIP for iSeries................................. 151
Cross Platform Compatibility ... 152

GZIP Restrictions ... 152
Special Note on GZIP Passwords .. 152

Processing GZIP Archives .. 152
GZIP Compressing... 153
GZIP Extracting .. 153

Sample GZIP Processing .. 154
Compressing a file.. 154

11 PKWARE PARTNERLINK: SECUREZIP READER/SECURELINK.... 155
About SecureZIP for iSeries Reader/SecureLink.. 155

If You Are a Sponsor: Sign the Central Directory... 156
Terms and Acronyms Used in This Chapter ... 156
PKWARE PartnerLink Program: Overview.. 157

Decrypting and Extracting Sponsor Data (Reader Mode).................................... 157
Partner (SecureLink) Data Exchange to Sponsor .. 158

Requirements ... 158
License ... 158
Operating Environment .. 158
Sponsoring Configuration... 158

Functional Overview .. 159
General Restrictions... 159
PartnerLink IVP Examples ... 159

 vii

Reader (UNZIP) Processing .. 160
Restrictions... 161
Archive Authentication Settings.. 161
Decryption Certificate Selection ... 162
File Signature Authentication Certificate Selection .. 162

SecureLink (ZIP) Processing .. 162
Restrictions... 163
Encryption Certificate Selection ... 163

A PERFORMANCE CONSIDERATIONS .. 165
Interactive Performance .. 165
Compression Type Performance.. 165
Data Type Selection... 166
Archive Placement (IFS or in a Library)... 166
ZIP64 Processing Considerations.. 166
Encryption Performance ... 167
Extended Attributes Selections.. 167

B EXAMPLES .. 169
Example 1 - PKUNZIP Files to a New or Different Library 169
Example 2 - CLP with Override for Stdout and Stderr to an OUTQ 170
Example 3 - Creating an Archive in Personal Folders (QDLS).......................... 171
Example 4 - Processing Archive on a CD (QOPT) .. 172
Example 5 - Compressing files from a CD (QOPT)... 173
Example 6 - Compressing CL with MSG Checking .. 174
Example 7 – Compressing Spool Files Samples .. 175
Example 8 – PKZSPOOL The Last Spool File of Current Job 176
Example 9 - CL to Compress All Spool Files for a Job to a PDF 176
Example 10 - Compress File with Public Digital Certificates 177
Example 11 - Decrypting File with Private Key Certificates 178
Example 12 - Sign Files and Archive with Private Keys 178
Example 13 - Authenticate Signed Files and Archive 179
Example 14 - Encryption using LDAP search for Recipients........................... 180

C LIST FILES ... 181
Creating List Files .. 181
Using List Files as Input.. 181

D TRANSLATION TABLES ... 183
Standard Code Page Support with Tables .. 183

viii

International Code Page Support ... 184
Translation Table Layout.. 185
Creating New Translation Table Members... 185
Example of PKZTABLES (USASCII) Translation Table....................................... 186

E SPOOL FILES CONSIDERATIONS... 188
Spool File Selections... 188

SPLF Attributes .. 188
PDF Creation Attributes ... 189

F CONTACT INFORMATION .. 191
PKWARE, Inc. ... 191

PROBLEM REPORTING ... 191
PROBLEM REPORTING (General) ... 191
PROBLEM REPORTING (Licensing)... 192

GLOSSARY.. 193

INDEX ... 202

 1

Preface

This manual covers both PKZIP for iSeries and SecureZIP for iSeries.

PKZIP for iSeries provides powerful, easy-to-use data compression on the AS/400,
iSeries and i5. PKZIP for iSeries Enterprise Edition also includes support for
password-based decryption of encrypted files powered by trusted RSA® BSAFE. Files
created by PKZIP for iSeries use the widely-adopted ZIP format and can be
accessed on all major platforms throughout the enterprise—from iSeries to PC.

SecureZIP for iSeries provides powerful, easy-to-use data compression and data
protection on the AS/400, iSeries and i5. SecureZIP for iSeries delivers high-
performance data compression and protects data with digital signatures and trusted
RSA BSAFE encryption, either password- or certificate-based, with key lengths of up
to 256 bits. Like PKZIP for iSeries, SecureZIP for iSeries uses the widely-
adopted ZIP format and creates files that can be accessed on all major platforms
throughout the enterprise.

This manual also covers SecureZIP Reader/SecureLink. SecureZIP
Reader/SecureLink is a special version of SecureZIP that is available through the
PKWARE PartnerLink program. The PKWARE PartnerLink program provides a
straightforward, secure way for an organization to exchange sensitive information
with outside partners who perhaps do not have SecureZIP.

SecureZIP Reader/SecureLink differs from the full SecureZIP for iSeries in that
it only extracts archives from, and only creates and encrypts archives for, a
PartnerLink sponsor. Contact PKWARE for more information on PKWARE PartnerLink.

About this Manual
This manual provides the information needed to utilize PKZIP and SecureZIP for
iSeries in an operational environment. It is assumed that people using this manual
have a good understanding of (Control Language) CL and dataset processing. Note
that the contents of this manual apply to the following operating systems:

• OS/400 V5R1M0 and above

• iSeries

This manual is intended for persons using both PKZIP and SecureZIP for iSeries.
The manual assumes that the reader has a good understanding of CL and file
processing.

2

Conventions Used in this Manual
Throughout this manual, the following conventions are used:

PKZIPi (bold-italicized) refers to both PKZIP for iSeries and SecureZIP for
iSeries products.

Program, screen display and printout examples may show either SecureZIP or PKZIP
constructs. Unless specifically denoted within SecureZIP feature sections, the
samples also apply to PKZIP.

If a line has (SecureZIP), it applies only to SecureZIP for iSeries.

If a section is flagged at the beginning with the phrase, Requires SecureZIP,
formatted as shown below, that section applies only to SecureZIP for iSeries:

Requires SecureZIP

The use of the Courier font indicates text that may be found in control language
(CL), parameter controls, or printed output.

The use of italics indicates a value that must be substituted by the user, for example,
a dataset name. It may also be used to indicate the title of an associated manual or
the title of a chapter within this manual.

Bullets (•) indicate items (or instructions) in a list.

The use of <angle brackets> in a command definition indicates a mandatory
parameter.

The use of [square brackets] in a command definition indicates an optional
parameter.

A vertical bar (|) in a command definition is used to separate mutually exclusive
parameter options or modifiers.

Related Publications
PKZIP/SecureZIP for iSeries product manuals include:

• PKZIP/SecureZIP for iSeries System Administrator's Guide - Provides
detailed information to assist the system administrator with the installation
and administrative requirements necessary to use SecureZIP for iSeries in
an operational environment.

• PKZIP/SecureZIP for iSeries User's Guide - Provides detailed information
on the product set in OS/400 and iSeries operating environments. Also
provided is a general introduction to data compression, SECZIP specific data
compression, and an overview on how to use PKZIP and SecureZIP for
iSeries, SECZIP control cards, and parameters.

• PKZIP/SecureZIP for iSeries Messages and Codes - This provides
information on the messages and codes that are displayed on the consoles,
printed outputs, and associated terminals.

 3

Related IBM Publications

IBM manuals relating to the PKZIPi product include:

• System Messages: This manual documents messages issued by the iSeries
operating system. The descriptions explain why the component issued the
message, provide the actions of the operating system, and suggest responses
by the applications programmer, system programmer, and/or operator.

• OS/400 CL Programming (SC41-5721): This manual provides a wide-
range discussion of iSeries e Advanced Series programming topics, including:
Control language programming, iSeries e Advanced Series programming
concepts, objects and libraries, and message handling.

• OS/400 CL Reference (SC41-5722 thru SC41-5726): This manual may
be used in the iSeries Information Center to find information on the following
CL reference topics: OS/400 commands, OS/400 objects, command
description format, command parts, command syntax, about syntax
diagrams, CL character sets and values, object naming rules, expressions in
CL commands, and command definition statements.

• Integrated File System Introduction (SC41-5711): This book provides
an overview of the integrated file system includes these topics:

• What is the integrated file system?

• Why might you want to use it

• Integrated file system concepts and terminology

• Interfaces you can use to interact with the integrated file system

• APIs and techniques you can use to create programs that interact with the
integrated file system

• Characteristics of individual file systems

• File Management (SC41-5710): This manual describes the data
management portion of the Operating System/400 licensed program. Data
management provides applications with access to input and output file data
that is external to the application. There are several types of these input and
output files, and each file type has its own characteristics. In addition, all of
the file types share a common set of characteristics.

• DDS Reference (RBAF-P000-00): This manual contains detailed
instructions for coding the data description specifications (DDS) for files that
can be described externally. These files are the physical, logical, display,
printer, and intersystem communications functions, hereafter referred to as
ICF files.

Related Information on the Internet
PKWARE, Inc.

www.pkware.com

http://www.pkware.com/

4

FTP site

Product downloads - ftp://bigiron.pkware.com/pub/products/pkzip/iseries

Product manuals - ftp://bigiron.pkware.com/pub

National Institutes of Standards Computer Security Resource Center
http://csrc.ncsl.nist.gov

Information on AES development
http://csrc.nist.gov/encryption/aes/

Information on key Management
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html/

RSA BSAFE® Content library
http://www.rsasecurity.com

Release Summary

New Products
The following products have been added to the PKWARE SecureZIP suite for the
iSeries operating environment:

• SecureZIP for iSeries Reader

• SecureZIP for iSeries SecureLink

New Features
New features in PKZIP for iSeries and SecureZIP for iSeries Release 8.2 include:

• New Compression algorithms with varying custom controls.

• Significant performances improvements with new compression algorithms.

• New ZIP64 Signal constraint checks to avoid building large archives.

• New default internal Translation Tables for EBCDIC to ADCII.

• A separate input archive can be specified other than the archive file to
created. This will allow an inputted archive to be preserved.

• A special key word *COPY for the FILES parameter has been added that
allows a zip run that will only copy the files from another archive.

• The ability to extract zSeries files created with RDW (EBCDIC variable length
records).

• iSeries PKWARE Save/Restore Application Feature or iPSRA.

• SecureZIP now supports multiple contingency keys with the use of inlist for
a type code.

• Expanded maximum password length from 200 to 260 alphanumeric
characters.

ftp://bigiron.pkware.com/pub/products/pkzip/iseries
ftp://bigiron.pkware.com/pub
http://csrc.ncsl.nist.gov/
http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html/
http://www.rsasecurity.com/

 5

New Commands
There are no new commands for version 8.2.

Command Changes & Defaults
The following commands have changes since version 8.1. Each command and
parameter listed below should be reviewed before activating PKZIPi 8.2:

PKZIP

ARCHIVE() Two additional option added (1. ZIP64 check and 2.
optional Input archive name). Defaults are backward
compatible.

COMPRESS() Additional options have been added. Nine (9) new
compression levels for Level and a new option for
compression method (Deflate or Deflate64). Defaults
are backward compatible.

FTRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

TRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

FILES() Revise to accommodate save commands for the iPSRA.

PKUNZIP

FTRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

TRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

RSTIPSRA() The iPSRA Restore command

Migration Considerations for Version 8.2

Upgrade/Migration notes #1:
Installations previously using text translation tables other than ISO9959_1 or
PKZ037419 for TRAN or FTRAN should review the data translation characters used.
The newer default tables in*ISO88591 use the IBM ICONV standard character sets
for IBM-037 EBCDIC and ISO-8859-1 ASCII code page 819.

In general, the newer default table is better for general-purpose text translation than
the older ASCIIUS, ASCIIUSE, ASCIIUK, and ASCIIUKE tables. However, the older
tables are still provided for compatibility in case installation-dependent processing
requires translation of specialized character sets. In fact the older tables are also
provided as a selection in the TRAN and FTRAN parameters as *INTERNAL. The new
default for TRAN and FTRAN is *ISO88591. If it is desired to continue with previous
defaults, change the default in the PKZIP, PKZSPOOL, and PKUNZIP commands
source and recompile the commands or use the CHGCMDDFT command.

6

For example:

 CHGCMDDFT CMD(MYZIPLIB/PKZIP) NEWDFT('FTRAN(*INTERNAL)
 TRAN(*INTERNAL)')

 CHGCMDDFT CMD(MYZIPLIB/PKUNZIP) NEWDFT('FTRAN(*INTERNAL)
 TRAN(*INTERNAL)')

User Help and Contact Information
For Licensing, please contact the Sales Division at 937-847-2374 or email
PKSALES@PKWARE.COM.

For Technical Support assistance, please contact the Product Services Division at
937-847-2687 or visit the Support Web site.

Appendix F lists the types of information needed to resolve issues with the product.

mailto:PKSALES@PKWARE.COM

 7

1 Getting Started

PKZIPi is a broad, flexible product on the iSeries, and AS/400 platforms, allowing for
compression and decompression of files. It is fully compliant with other PKZIP-
compatible compression products running on other operating systems.

Because the PKZIP standard for text data storage is ASCII, PKZIPi facilitates
conversion between the ASCII and EBCDIC character sets. Therefore, compressed
text files can be transferred between IBM mainframe environments and systems
using the ASCII character sets, including UNIX, DOS, SecureZIP for zSeries, and
PKZIP for zSeries.

In addition to PKZIP-format archive support, PKZIPi can also produce and
manipulate (GNU) GZIP-format archives. See Chapter 10.

PKZIP and PKUNZIP Commands

PKZIPi uses two main commands—PKZIP and PKUNZIP—to control its high-
performance data compression functionality. The PKZIP command launches a utility
that compresses files and places them in a ZIP format archive. PKUNZIP reverses
this process: it decompresses data in a ZIP archive created by PKZIP or another file
compression program and restores the files to their original form. Both commands
are controlled by options that allow a variety of functions to be performed.

Multiple levels of processing control are available through the use of customized
option modules, shared command lists, and individual job inputs. In addition to file
selection, features such as compression levels and performance selections can be
specified. Also, a 32-bit cyclic redundancy check (CRC) is a standard feature used to
guarantee data integrity.

A ZIP archive is platform-independent; therefore, data compressed (ZIPPED) on one
platform, for example, UNIX, can be decompressed (UNZIPPED) on another platform,
for example, OS/400 and MVS/ESA, by using a compatible version of PKUNZIP.

Basic Features of PKZIPi

PKZIPi is generally compatible with PKZIP 2.x, and as such, has the following
features:

8

Compliance with compression programs on other platforms, including Windows,
LINUX, UNIX, DOS, SecureZIP for zSeries, and PKZIP for zSeries.

• User-selected compression ratios.

• Storage capability of 65,535 files within one ZIP Archive.

• Compression of files of up to 4 gigabytes.

• A maximum ZIP archive size of 4 gigabytes.

• Data integrity assurance using 32-bit CRC error detection.

• Translation of data to a system-independent format, thus providing easy file
transfers within a mixed or varied file environment.

PKZIPi also offers a series of extended features such as creation of GZIP archive,
spool files support, large file support (files greater than 4 GB and files in archive
exceeding 65,535), advanced encryption, and self-extracting archives.

Initializing the License

Evaluation Period
You may obtain a key from the Sales Division to use to generate an evaluation
license that allows full use of the product for 30 days. Contact PKWARE anytime
during this period to obtain licensing to use the product beyond the initial period.

You can reach the Sales Division at 937-847-2374 or email pksales@pkware.com.

For technical support, contact the Product Services Division at 937-847-2687 or
online at the Support Web site.

When you receive the license control card information from PKWARE, you build the
license data set using the Build License program. Running the INSTPKLIC command
updates the LICENSE data set and reports the license status of PKZIPi at your
location.

Release Licensing
Each release of SecureZIP for iSeries and PKZIP for iSeries requires that a new
license key be obtained from Customer Service and that a new license record be
generated. The new release will fail with AQZ9077 "License Keys have invalid version
setting" if the license file is used from a previous release.

mailto:PKSALES@PKWARE.COM

 9

Show System Information
To report on the status of a license at your location, you can run the environment
“WHATOSV” program by doing a program call: CALL WHATOSV. It will provide a
report similar to:

PKWARE WHATOSV Current Operating Environment Thu May 15 12:05:49 2003

SecureZIP for iSeries (tm) Version 8.2.0 with build date 2003/05/14
 Current PKZIP Library is PKW82051S
IBM iSeries Model 9406, Type 270-23E7
Serial Number <010-7X8WT >, PRC Group < P10>, OS is at V5R2M0.

Press ENTER to end terminal session.

The output of this report is what you will need to send to your reseller or PKWARE
sales representative to obtain a DEMO code.

Note: The PKZIPi Library must be added to the library list prior to running this
program.

Please have the output of this report handy when speaking with your reseller or
account rep. You will be expected to supply the following additional information:

• Company name

• Company contact

• Phone number

• Contact email

Applying a License Key or Authorization Code
Installing the PKZIP license activation keys is done by adding the licensing
information obtained from PKWARE, Inc. into a source file member (one is provided
with distribution library call PKZLICIN) and then running the install license program
to activate.

By executing the INSTPKLIC command, the LICENSE dataset will be updated and a
report will be produced that will reflect the state of PKZIPi at your location.

Trial activation is accomplished by first editing the member PKWARELIC and adding
the company customer record and keys supplied by PKWARE, Inc. One way of editing
the member would to use the following command with the correct library:

EDTF FILE(PKW82051S/PKZLICIN) MBR(PKWARELIC)

or

STRSEU SRCFILE(PKW82051S/PKZLICIN) SRCMBR(PKWARELIC)

Remember since this a source file member and you use the EDTF command that the
data will start in column 13, because the source sequence number and date stamp is
in the true columns 1 thru 12.

For example:

 EDTF FILE(PKW82051S /PKZLICIN) MBR(PKWARELIC)

10

 Edit File: PKW82051S /PKZLICIN(PKWARELIC)
 Record : 1 of 3 by 8 Column : 13 92 by 74
 Control :

CMD ..+....2....+....3....+....4....+....5....+....6....+....7....+....8....+.
 ************Beginning of data**************
 *LICENSED BY PKWARE, Inc 06/03/03 Tait Hamiel
 55 A4CMD1NR 000014581 PKWARE Internal Demo Customer
 99 CMDOAXB1 20030703 0107X8WTP10
 ************End of Data********************

 F2=Save F3=Save/Exit F12=Exit F15=Services F16=Repeat find

Notice in this case the columns on the ruler shows column 13 for the first column of
the license data.

For example:

 STRSEU SRCFILE(PKW82051S/PKZLICIN) SRCMBR(PKWARELIC) :

 Columns . . . : 1 71 Edit PKW82051S/PKZLICIN
 SEU==> PKWARELIC
 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
 *************** Beginning of data *************************************
0001.00 *LICENSED BY PKWARE, Inc 06/03/03 Tait Hamiel
0002.00 55 A4CMD1NR 000014581 PKWARE Internal Demo Customer
0003.00 99 CMDOAXB1 20030703 0107X8WTP10
 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle
 F16=Repeat find F17=Repeat change F24=More keys

Once you have typed or copied the license information provided by PKWARE, you will
need to save these changes by pressing F3 and exit the edited member by pressing
F3 again. Next, run the install program using the following command:

INSTPKLIC INFILE(*LIBL/PKZLICIN) INMBR(PKWARELIC) or prompt F4

 Install SecureZIP for iSeries License (INSTPKLIC)

 Type choices, press Enter.

 Type *INSTALL *INSTALL, *VIEW
 Input Control File PKZLICIN Name, PKZLICIN
 Library name *LIBL Name, *LIBL
 Control Member pkwarelic Name, *FIRST

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

By executing the INSTPKLIC command, the LICENSE dataset will be updated and a
report will be produced that will reflect the state of PKZIPi at your location.

 11

SecureZIP for iSeries (tm) Version 8.2.0, 2003/06/09
Copyright. 2004 PKWARE, Inc. All Rights Reserved.
PKZIP (R) is a registered trademark of PKWARE (R), Inc.
Machine ID = 0107X8WT, Processor Group = P10
Rec - 1 *LICENSED BY PKWARE, Inc 06/03/03 Tait Hamiel
Rec - 2 55 A4CMD1NR 000014581 PKWARE Internal Demo Customer
Rec - 3 99 CMDOAXB1 20030703 0107X8WTP10
Compression - Evaluation set to expire in 23 days on 20030703
Decompression - Evaluation set to expire in 23 days on 20030703
Database File Handlers- Evaluation set to expire in 23 days on 20030703
IFS File Handlers - Evaluation set to expire in 23 days on 20030703
GZIP - Evaluation set to expire in 23 days on 20030703
Spool Files - Evaluation set to expire in 23 days on 20030703
Self Extracting - Evaluation set to expire in 23 days on 20030703
License File PKW82051S/PKZLIC(PKZLIC) Updated successfully
Press ENTER to end terminal session.

Reporting the PKZIPi for iSeries License
By using the INSTPKLIC TYPE(*VIEW) command, the current licensing settings will
be displayed.

SecureZIP for iSeries (tm) Version 8.2.0, 2003/06/09
Copyright. 2004 PKWARE, Inc. All Rights Reserved.
PKZIP (R) is a registered trademark of PKWARE (R), Inc.
Machine ID = 0107X8WT, Processor Group = P10

A License Report requested on 0107X8WT from CPU Serial#
8.2 Product Licensed to Customer # 000003079 -Key Testers Inc.

Compression :Licensed -Expires 02/28/2400 for processors:
 Serial# 0107X8WT Processor Type P10

Decompression :Licensed -Expires 02/28/2400 for processors:
 Serial# 0107X8WT Processor Type P10

GZIP :Licensed -Expires 02/28/2400 for processors:
 Serial# 0107X8WT Processor Type P10

IFS File Handlers :Licensed -Expires 02/28/2400 for processors:
 Serial# 0107X8WT Processor Type P10

Database File Handlers:Licensed -Expires 02/28/2400 for processors:
 Serial# 0107X8WT Processor Type P10

Advanced Encryption :Licensed -Expires 02/28/2400 for processors:
 Serial# 0107X8WT Processor Type P10

Spool Files :Licensed -Expires 02/28/2400 for processors:
 Serial# 0107X8WT Processor Type P10

Self Extracting :Licensed -Expires 00/00/0000 for processors:

Press ENTER to end terminal session.

PKZIP and SecureZIP for iSeries Grace Period
PKWARE recognizes that there may be periods where the licensing environment
established by the customer is no longer valid. Circumstances such as disaster
recovery processing or the installation or upgrade of new processors will affect the
environment.

12

To accommodate the installation, PKZIPi has a process that will allow you to
continue to use the product for a grace period of seven days when the established
licensing environment is no longer valid. Note that the user must have write
authority on the license dataset to invoke the grace period. This authority is only
required the first time PKZIP/PKUNZIP is run after a CPU change has occurred; it is
not required after the grace period has been successfully invoked (this is one time
per CPU).

During the grace period, error messages will be displayed on the job log and/or
display/printout for each execution of PKZIPi. At the end of the period, if the license
is not updated, the product will no longer function for the new CPUs except to VIEW
an archive. You must contact PKWARE at pkcustomerservice@pkware.com during the
grace period to obtain licensing to allow extended use.

Invoking PKZIPi Services

Three main commands control PKZIPi functionality in the OS/400 operating
environments. The commands are:

• PKZIP - Launches compression utility

• PKUNZIP - Launches archive extraction utility

• PKZSPOOL - Launches compression utility for spool files

Each of the commands can be invoked interactively, submitted for a batch run, or
used anywhere that an iSeries command can be issued.

Help panels for each command can be activated by using the F1 (help) key.

PKZIPi Differences from other Platforms

This section covers the differences between PKZIPi and other versions, including
versions that run on other operating systems or platforms. Most of the differences
are due to the QSYS library file type system and the iSeries object-oriented base.

Attributes
(non-extended)

Various MS/DOS options support the selection of files by file
attributes such as hidden, read-only, and system. These
attributes are not meaningful on the OS/400 file system.

ANSI comments Because OS/400 does not support ANSI control codes,
related options are not supported. When unzipping from an
archive, the archive comment will be displayed, but ANSI
control codes in this comment will not be masked out. This
could cause attribute changes on the iSeries display.

Archive file date
controls PKZIP

DOS options control whether the ZIP file date is updated or
retained when altering the archive. Because the last used
date on OS/400 is not under program control or alterable by
a command, these options are not supported.

mailto:pkcustomerservice@pkware.com

 13

Archive Comments
PKZIP

DOS options allow editing of comments for individual files in
an archive. This version supports editing of a file’s text
description, but is not recommended for batch running, or for
a large number of files due to the interactive message
responses required.

File naming
differences

The files used in the QSYS library file system have their own
naming style. Each file associated with a library file and
members would be depicted as library/file(member). Usually,
all file names are stored as open system file names with
directories, ending with a file name. For a detailed
description and techniques see Chapter 5.

HELP PKZIP for DOS™ has options to display a list of commands.
Because PKZIPi uses iSeries commands, the help system is
built for each command and is activated by PF1 on each
parameter.

Mixed Case
Filenames

When using the IFS (integrated file system), the file names
are case sensitive and act like other file systems (UNIX,
DOS, Windows, etc.). When using the QSYS library file
system, the file names are always in UPPER CASE.
Occasionally, when trying to update and archive (or select
from an archive), you may encounter a case sensitive
search. Use PKUNZIP view to get the exact name stored.
This would be appropriate when doing a PKZIP TYPE(
*DELETE) where the selection file would need to match.

Use of SAVF Method
At this time, only physical files with attributes of PF-DTA, PF-SRC, and SAVF in the
QSYS file system, stream files and directories in the IFS, and spool files can be
processed by PKZIPi. Also, some special database functionality such as triggers, file
constraints, alternate collating sequence, and large object fields, are not stored in
the archives.

To overcome some of the restrictions listed above, PKZIPi can compress and
decompress SAVF. The objects to be compressed are saved to a SAVF using SAVOBJ
or SAVLIB. The SAVF is then compressed to an archive using PKZIP. To restore the
data, first use PKUNZIP to re-create the SAVF, and then use RSTOBJ or RSTLIB to
restore objects from within the decompressed SAVF. SAVF are binary and only
pertain to OS/400.

Another solution may be to utilize the iSeries PKWARE Save/Restore Application
Feature (iPSRA) feature, where the save command can issued with the save API
based on the command defined in the FILES parameter. See Chapter 6 on the iPSRA
feature for details.

Data Compression
Because data compression techniques reduce file size, a compressed data file will use
less storage space and can be transferred in a faster, more efficient manner. A file
can be compressed (a ZIP candidate) to a compact size (ZIPPED file), and then to

14

use the file again, it must be uncompressed or extracted to its original size
(UNZIPPED file).

One easy data compression method eliminates repeating or redundant data by
replacing it with representative information that will be used when restoring the
data. An example of this data compression technique is the Run-Length Encoding
method, which applies to redundant data where a repeating character (the run) is
represented as a count or value (the length). The compressed form is the repeated
character with its count.

Example: B 2 2 2 2 E H H H H H H H H H

Compressed: B *4 2 E *9 H

Note: The efficiency of this method is dependent upon the amount of redundancy in
the data.

To perform a thorough compression operation, more advanced algorithms and
enhanced techniques are required. PKZIPi uses just such methods to achieve
maximum results.

ZIP Archives

PKZIPi is capable of storing compressed data in ZIP archives. There is no limit to the
number of archives you may create.

ZIP archive capability:

• ZIP archive refers to any valid ZIP-format file created by a PKZIP® 4.x-
compatible product.

• ZIP64 refers to ZIP archives that include the ZIP64 format that can handle
more than 65,534 files and files that exceed 4 GB. (See “Large Files
Considerations.”).

• Each standard archive can store up to 65,534 files.

• Files that are over 4 GB have to be archived with GIZP or by using the Large
File Support.

• Each standard archive may contain up to 4 GB of data. ZIP64 is required for
larger archives.

For each file in the archive, the following information is stored with the compressed
data:

• Filename.

• File directory date and time.

• File’s initial CRC value (see Cyclic Redundancy Check).

• Method of compression used.

• PKZIPi version required for file extraction.

• File size, uncompressed.

• File size, compressed.

Some files may contain the following additional information:

 15

• The version of PKZIPi that created the file.

• File attributes.

• Any comment about the file.

• Any comment about the archive.

• Platform specific attributes (see Cross Platform Compatibility).

• If encrypted and what method of encryption.

Cyclic Redundancy Check
Cyclic redundancy check (CRC) is a method used to verify the integrity of a data file
after it is restored from a ZIP archive.

Before a file is compressed, a PKZIPi algorithm computes a 32 bit hexadecimal
value for its data. The CRC value is stored in a file that is within the ZIP archive.
When the data in the file is extracted, PKZIPi processes it again using the same
algorithm to produce a second CRC value. Once the file is processed, the original
CRC value is compared to the new CRC value to ensure that they match.

Note: If the data is the same as its previous state, the same CRC value will be
produced. When the two CRC values are compared, and should the extracted value
not match the stored, initial value, the integrity of the file is in question and PKZIPi
reports the results. In this case, it is possible the data was corrupted within the ZIP
Archive.

Encryption

Requires SecureZIP

SecureZIP for iSeries can encrypt data for security control and provide a password
lockout for extracting data. Various security levels are available, with multiple
encryption algorithms. See Chapter 2 for a description of security features in
SecureZIP for iSeries.

File Selection and Name Processing

This section discusses how file selection is performed for ZIP processing with PKZIPi.
The primary commands used for ZIP processing are discussed here, along with some
overview notes and known restrictions.

This section also discusses how files are selected within an iSeries environment.
Remember, ZIP directory entries within a ZIP archive will be defined in a system-
independent format, which is not iSeries compatible.

Note: Directory entries within a ZIP archive are actually in a format compatible with
UNIX systems and have been translated into the ASCII character set. In addition, the
dataset level separators are typically set as the forward slash (“/”), not the period

16

(“.”) as in iSeries, although this can be controlled through command actions in
PKZIPi.

See Chapter 5 for further information on how PKZIPi handles file name interchanges
between iSeries and common ZIP format.

Primary File Selection Inputs
PKZIPi will only process:

• iSeries objects of type FILE (only with attributes PF-SRC, PF-DTA, and SAVF).

• IFS stream files (*STMR) and IFS directories(*DIR).

• Spool files.

Other objects must first be unloaded into an iSeries save file (SAVF) before they can
be processed by PKZIPi (see: Use of SAVF Method) or use the Save Applications
data with the iPSRA feature. See Chapter 6.

The FILES parameter in both PKZIP and PKUNZIP specifies which files are to be
processed for all files except spool files (SPLF have their own selection parameters).
One or more names can be specified, and each name is in either OS/400 QSYS
format, or IFS format, depending on F2ZTYPE settings. An asterisk may be used at
the end of the library name, file name, or member name to select names beginning
with the prefix used. To select all members of a file, *ALL may be used. To select all
files in a library *ALL may be used (as long as it is qualified by at least a library
name), for example, FILES('mylib/*ALL'). If *ALL is specified without at least a
qualifying library name, the specification is ignored and no files will be selected.

The PKZIPi QSYS file system expands a partial file specification in several ways to
make file specification more convenient. Each file specification may consist of a
filename; a library name; a file name and member name; a library name and file
name; or a library name, file name, and member name. iSeries SAVF may also be
selected, but because a *SAVF file does not contain members, a SAVF will not be
selected if a member name was included in the file specification.

In the Integrated file system, each file specification may consist of a directory, a
path of directories, a directory and file, or a path of directories and file.

The various combinations that may be used are shown below:

File
Type

File specification Expanded As Notes

QSYS library*/ library*/*all(*all) Finds all files in libraries
beginning with library.

 fileinlib *LIBL/fileinlib(*ALL) Searches library list for
all files called fileinlib.
If a matching file is
found, all of its
members will be
selected. If a SAVF is
found, it will be
selected.

 17

File
Type

File specification Expanded As Notes

 fileinlib*(mem*) *LIBL/fileinlib*(mem*) Searches library list for
all files beginning with
fileinlib. If a matching
file is found, members
beginning with mem*
will be selected. If a
SAVF is found, it will
NOT be selected
because the file
specification includes a
member name.

 library*/file* library*/file*(*ALL) Searches libraries that
begin with library prefix
and for files that begin
with file prefix. If a
matching file is found,
all of its members will
be selected. If a SAVF
is found, it will be
selected.

 library*/file*(memo*) library*/file*(mem*) Searches libraries that
begin with library prefix
and files that begin with
file prefix. If a matching
file is found, members
beginning with mem
prefix will be selected.
If a SAVF is found, it
will not be selected
because the file
specification includes a
member name.

IFS Dir/* Dir/*all Searches all files in
path DIR.

Spool
Files

N/A Uses parameters:
SPLFILE, SFUSER,
SFQUEUE, SFFORM,
SFUSRDTA,
SFSTATUS,
SFJOBNAM, and/or
SPLNBR.

iPSRA Full Save Command SAV, SAVLIB,
SAVOBJ, or SAVDLO

Note: If parameter TYPE(*DELETE) is used, then the file name format for these
names must be in MS/DOS format (that is, if CVTFLAG has not been used). See the
FILES keyword. Files may also be excluded. See the EXCLUDE keyword.

The valid parameter values for the FILES keyword are as follows:

'file specification 1' 'file specification 2'...'file_specification nn'

This is the list of one or more file specifications, separated by spaces.

18

For example:

mylib/myfile(prf*)

mylib/*all(*all)

By default, PKZIPi does a match on files in the QSYS library system with no case
sensitivity and in the IFS with case sensitivity. Some IFS file systems contain case
sensitive file names. To force PKZIPi to perform non-case sensitive file name
matching use TYPFL2ZP(*IFS2).

File Exclusion Inputs
Using similar file specification techniques as described above in the Primary file
Selection Inputs section, PKZIPi can specify from one to many file patterns that will
be used to exclude files that were selected with the FILE parameter. The files can be
inputted into the command parameter EXCLUDE or into a text file that can be
processed by parameter EXCLFILE.

Care should be taken when using wildcards excluding inputs to ensure that FILES
and EXCLUDE parameters select the desired files.

Input ZIP Archive Files
During a FRESHEN or UPDATE request, files contained within the existing ZIP archive
are added to a candidate list. Names stored previously are used to search the system
files for viability (any file names not found in the system remain in the ZIP archive).

SPOOL File Selecting
The FILES parameter is not used to select spool files for compression, but instead
uses its own selection parameters.

There are eight positional parameters that can be specified to select the spool files:
the SPOOL FILE NAME (SPLFILE), the SPOOL FILE NUMBER (SPLNBR), the user that
created the files (SFUSER), the OUTQ that the file is residing (SFQUEUE), the form
type specified (SFFORM), the user data tag associated with the spool file
(SFUSRDTA), the status of the spool file (SFSTATUS), or the specific job name/user
name/job number (SFJOBNAM). Only files that meet all of the selection values will be
selected.

If the parameter SFJOBNAM is coded, the job must exist and the parameter SFUSER
will be ignored, since it is already part of the SFJOBNAM parameter.

Large Files Considerations

Large File Support Summary
The large file support feature known as ZIP64 throughout this manual was added to
PKZIP for iSeries in release 5.6. This separately licensed feature of PKZIPi
provides several enhancements relating to capacity, size, and performance. Some of
the key features include:

 19

Processing support (ZIP and UNZIP) for Archives enabled with the standard ZIP64
formats from other platforms.

An increased ZIP archive file capacity is raised from 65,534 to the theoretical limit of
4,294,967,295 files.

An increased user file size handler, raised from 4 Gigabytes minus 1 byte (32 bit
binary counter) to a theoretical limit of 9 Exabytes (64 bit binary counter).

An increased support for ZIP archive sizes exceeding 4 Gigabytes (same as user file
size limit).

The preceding values are given only as theoretical limits. In practice, there are
reasonable limitations due to the availability of resources along with processing
tolerances.

Note: 4 GB or Gigabyte is equal to 4,294,967,295 bytes. 9 EB or Exabyte is equal to
9,223,372,036,854,775,807 bytes.

Large File Support File Capacities
The original .ZIP file format has faithfully met the needs of computer users since it
was introduced by PKWARE in 1989. As computer technology has advanced over
time, storage capacities have increased dramatically. These increases make the
numbers and sizes of files that seemed unimaginable ten years ago a reality today.
To extend the utility of the .ZIP file format to meet these changing system needs,
PKWARE extended the .ZIP file format to support more than 65,535 files per archive
and archive sizes greater than 4 Gigabytes (GB). This is known as the ZIP64 format.

The specification for the .ZIP file format has been publicly available and distributed
by PKWARE in a file called APPNOTE.TXT. This file documents the internal data
structures and layout that define a .ZIP archive. The extensions introduced by
PKWARE fully supports all the features of your existing archives and newer versions
of PKZIP that supports these new extensions will continue to read all of your current
archives. Prior to the PKZIP for iSeries 5.6 release, versions of PKZIP on the
OS/400 were limited to storing no more than 65,534 files in a .ZIP archive.

Another limitation that existed prior to the 5.6 version of the PKZIP for iSeries was
that a single .ZIP archive or files in archive could not be larger than 4 GB
(4,294,967,295 bytes). The extended ZIP64 file format specification available with
PKZIP 5.6 supports creating .ZIP archives containing over 4 billion files and with
sizes larger than 9 quintillion bytes. These are only theoretical limits and most
iSeries systems and other computer systems in common use today do not have
enough storage capacity, CPU or available memory to create and store ZIP64
archives approaching these limits.

The practical limits imposed by a typical iSeries system in use today and configured
with various memory sizes will support compressing up to approximately 265,000
files. Compressing this number of files can take a long time, not only for the
compression process, but to manage the directories and properties of each of these
files.

Your available system resources (processor speed, DADS, Memory, and other
processing) limits the performance you can expect from PKZIPi when processing
large numbers of files or large archives. If you are compressing large numbers of
files on an iSeries with insufficient memory or other resources you can expect slow
processing.

20

When compressing large files, it is a good idea to have your archives set up to be
stored in the IFS rather than in a library/file. The overhead is much less when storing
the archive in the IFS. It is even more important when updating or adding to an
archive where the temporary archive will also be processed in the IFS

Versions of PKZIP for iSeries prior to 5.6 will not recognize these new features and
will be unable to view or extract any files in your archives that are dependent on
these ZIP64 features. Also, any ZIP compatible programs you may be using from
other companies will not be able to access all of the contents of your large archives.
They may report that an archive is too large, or they may incorrectly report that the
archive has errors. To ensure access to data in your large archives, always use
genuine PKZIP/SecureZIP from PKWARE.

Cross Platform Compatibility

Cross platform compatibility provides PKZIPi its ability to allow data to move
between different computer operating environments. PKZIPiwas intentionally
designed for cross platform use. Regardless of platform, PKZIPi archives are
compatible with SecureZIP for zSeries, PKZIP for zSeries, PKZIP for MVS,
PKZIP for OS/400, PKZIP for UNIX, PKZIP for LINUX, PKZIP for DOS, and
PKZIP for Windows to name a few. Because PKZIPi automatically converts the
data between EBCDIC and ASCII, files prepared on the host are readable on any PC
or UNIX system. The internal format of a ZIP archive is identical regardless of which
platform compressed the files that the archive contains. If you want to transfer data
across platforms using any other ZIP utility, you should always run a test to verify
the cross platform compatibility.

PKZIPi uses the same ZIP file format used by other ZIP compatible products,
independent of the platform on which it is running. PKZIPi archives are not platform
dependent allowing greater flexibility in file usage. Data can be zipped on one
platform, for example UNIX, and unzipped onto another platform, such as OS/400.
To do this, PKZIPi converts the data structure into the ZIP format and saves the
appropriate file information in the ZIP archival directory entries.

http://www.pkware.com/company/standards/appnote/

 21

ZIP File Format Specification
The following table lists features of the ZIP file format specification supported on the
zSeries and iSeries platforms. The notation (EE) on some entries—for example,
PK8.2(EE)—stands for Enterprise Edition.

ZIP Feature Version MVS/zSeries OS400/iSeries

Default 1.0

File represents a volume label 1.1 Not supported Not supported

File represents a folder 2.0 Not supported Not supported

Deflate compression 2.0 2.x 2.x

Traditional encryption 2.0 2.x 2.x

Deflate64 compression 2.1 Not supported Not supported

DCL Implode compression 2.5 Not supported Not supported

File is a patched data set 2.7 Not supported Not supported

File uses Zip64 size extensions 4.5 5.6 5.6

BZip2 compression 4.6 Not supported Not supported

DES encryption 5.0 SZ8.0,
PK8.2(EE)

SZ8.0,
PK8.2(EE)

3DES encryption 5.0 SZ8.0,
PK8.2(EE)

SZ8.0,
PK8.2(EE)

RC2 encryption 5.0 SZ8.0, PK8.2(EE) SZ8.0, PK8.2(EE)

RC4 encryption 5.0 SZ5.5, PK8.2(EE) SZ5.5, PK8.2(EE)

AES encryption 5.1 SZ8.0, PK8.2(EE) SZ8.0, PK8.2(EE)

Certificate encryption using non-OAEP key
wrapping

6.1 8.0 (SecureZIP) 8.0 (SecureZIP)

Central Directory Encryption (File Name
Encryption)

6.2 8.0 (SecureZIP) 8.0 (SecureZIP)

If you want to transfer data across platforms using any other ”ZIP compatible”
product, you should check with the supplier first to confirm which versions of PKZIP
it is compatible with.

For more information regarding data formats, see “Data Format - Text Records vs.
Binary Records” in Chapter 3 for a discussion regarding special considerations when
transferring files between different platform types.

PKZIP/SecureZIP for iSeries Restrictions
Due to various iSeries processing characteristics, the following restrictions should be
carefully reviewed to determine the best way to proceed when using PKZIPi:

PKZIPi in the QSYS file system will only work with objects that have an object type
of *FILE and an attribute of PF-DTA, PF-SRC, and SAVF. To process other objects

22

such as *PGM, *CMD, etc., use the SAVF method (see “Use of SAVF Method” in
Chapter 1).

PKZIPi in the integrated file system (IFS) will only work with stream files (*STRM)
and directories (*DIR).

Special database functionality, such as triggers, file constraints, alternate collating
sequence, and logical files are not stored in an archive. To maintain this
functionality, use the SAVF method (see “Use of SAVF Method”).

Special database fields for large objects (LOB) are not supported. These fields
include: character large objects (CLOBs), double-byte character large objects
(DBCLOBs), and binary large objects (BLOBs). In cases where the database contains
one of these types of fields, use the SAVF Method.

 23

2 Introduction to Data Security

Requires SecureZIP

This chapter details how SecureZIP for iSeries can strongly encrypt data for
security control and protection. Much of the reference information in this chapter
derives from the National Institutes of Standards and Technology. The NIST
Computer Security Resource Center web site, http://csrc.ncsl.nist.gov/, contains
FAQ’s and documentation relating to computer security along with the Federal
Information Processing Standard (FIPS) documents. In addition, the PKWARE web
site, WWW.PKWARE.COM, contains information relating to security and links to the
RSA Security, Inc web site that describes in detail the BSAFE implementation used in
SecureZIP for iSeries.

The following sections describe encryption, authentication, types of algorithms in
use, information about specific mandates requiring the use of secure data and how
SecureZIP for iSeries will secure that data.

Encryption
Encryption provides confidentiality for data. The data to be protected is called
plaintext. Encryption transforms the plaintext data into an unreadable form, called
ciphertext, using an encryption key. Decryption transforms the ciphertext back into
plaintext using a decryption key. Several algorithms have been approved in FIPS for
the encryption of general purpose data. Each of these algorithms is a symmetric key
algorithm, where the encryption key is the same as the decryption key. In order to
maintain the confidentiality of the data encrypted by a key, the key must be known
only by the entities that are authorized to access the data. These symmetric key
algorithms are commonly known as block cipher algorithms, because the encryption
and decryption processes each operate on blocks (chunks) of data of a fixed size.

FIPS 46-3 and FIPS 197 have been approved for the encryption of general-purpose
data. The protection of keys is discussed below under Key Management.

SecureZIP for iSeries uses symmetric key algorithms when encrypting user data.

Note: PKZIP for iSeries provides support for password-based encryption and
decryption using a 96-bit “Standard” encryption algorithm that is supported by older
ZIP-compatible utilities. In addition, PKZIP for iSeries Enterprise Edition supports
the decryption of all password-based algorithms provided in SecureZIP for iSeries.

http://csrc.ncsl.nist.gov/
http://www.pkware.com/

24

Authentication
Authentication is the process of validating digital signatures that may be attached to
files in an archive or to an archive’s central directory.

Authentication is a separate operation from data encryption. Whereas encryption is
concerned with preventing parties from accessing sensitive data (such as private
medical or financial information), authentication confirms that information actually
comes unchanged from the purported source.

Authenticating digitally signed data both verifies the signature and validates the
signed data.

Data Integrity
SecureZIP uses a cyclic redundancy check (CRC) to ensure that data is successfully
transferred into and out of a ZIP archive. The CRC process creates a unique hash
value “thumbprint” from the original data stream. The thumbprint is regenerated at
the receiving end and compared with the hash of the source for equality. The
thumbprint value is stored independently of the data stream and is used during
UNZIP processing to complete validation of the data.

SecureZIP extends the concept of the CRC in two ways for the purpose of providing
a tamper-resistant container within the ZIP archive. First, more rigorous HASH
algorithms (MD5 and SHA-1) are used (as specified by the SIGN_HASHALG
command) in place of the 32-bit CRC to accurately reflect the uniqueness of the data
stream. Second, the hash value is encrypted within a digital signature using a
private-key certificate to protect it from tampering.

For more information regarding SHA-1 (Secure Hash Algorithm), see FIPS PUB 180-
1, describing the Secure Hash Standard, at http://www.itl.nist.gov/fipspubs/fip180-
1.htm.

SecureZIP for iSeries provides two commands, SIGN_ARCHIVE and SIGN_FILES,
to intiate the creation of digital signatures within the ZIP archive. The AUTHCHK
command is used to perform a tamper check operation using the digital signature
and hash.

Digital Signature Validation
SecureZIP makes use of certificate-based encryption within the public key
infrastructure (PKI) to generate and validate digital signatures. PKI provides an
authentication chain for certificates to guarantee that the signature was created by
the purported source. SecureZIP supports the certificate chain authentication
process by including necessary identification information within the ZIP archive.
Subsequently, the certificate(s) used for signing can be authenticated through a
complete chain of trust.

To complete the chain of trust, a root (or self-signed) certificate representing the
certificate’s issuing organization is installed on the authenticating system. This
provides the receiving organization with the authority to declare how the final trust
sequence should be treated. Signatures based on certificates from certificate
authorities (CA) that are not authorized or trusted are declared as being untrusted
by SecureZIP.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm

 25

Additional facets of validating a certificate’s viability for use include a defined range
of dates within which a certificate may be used and whether the certificate has been
declared to have been revoked. Configurable SecureZIP policies (EXPIRED and
REVOKED attributes) provide support to ensure that the certificates involved in
authentication also adhere to these restrictions.

SecureZIP for iSeries provides a means to install and access the certificates
necessary for signing and authentication. The AUTHCHK command, along with
configured policy settings governs the type (archive directory or data files) and level
of authentication that is to be performed.

Digital Signature Source Validation
A final step in completing the authentication process is to ensure that the archive
and/or file data was sent from a particular source. Up to this point, using the
previous two aspects of authentication, we are certain that the archive directory
and/or files were signed with a private-key certificate that came from a trusted
source (CA) and that the data stream has not been tampered with since it was
placed into the ZIP archive. However, these steps alone do not guarantee that a
different party under the same root/CA chain did not perform the signing operation.

SecureZIP for iSeries provides an optional parameter in the AUTHCHK command
to declare the specific party from whom the data is expected.

Public-Key Infrastructure and Digital Certificates

Public-Key Infrastructure (PKI)
Use of digital certificates for encryption and digital signing relies on a combination of
supporting elements known as a public-key infrastructure (PKI). These elements
include software applications such as SecureZIP that work with certificates and keys
as well as underlying technologies and services.

The heart of PKI is a mechanism by which two cryptographic keys associated with a
piece of data called a certificate are used for encryption/decryption and for digital
signing and authentication. The keys look like long character strings but represent
very large numbers. One of the keys is private and must be kept secure so that only
its owner can use it. The other is a public key that may be freely distributed for
anyone to use to encrypt data intended for the owner of the certificate or to
authenticate signatures.

How the Keys Are Used
With encryption/decryption, a copy of the public key is used to encrypt data such
that only the possessor of the private key can decrypt it. Thus anyone with the public
key can encrypt for a recipient, and only the targeted recipient has the key with
which to decrypt.

With digital signing and authentication, the owner of the certificate uses the private
key to sign data, and anyone with access to a copy of the certificate containing the
public key can authenticate the signature and be assured that the signed data really
proceeds unchanged from the signer.

26

Authentication has one additional step. As an assurance that the signer is who he
says he is—that the certificate with Bob’s name on it is not fraudulent—the signer’s
certificate itself is signed by an issuing certificate authority (CA). The CA in effect
vouches that Bob is who he says he is. The CA signature is authenticated using the
public key of the CA certificate used. This CA certificate too may be signed, but at
some point the trust chain stops with a self-signed root CA certificate that is simply
trusted. The PKI provides for these several layers of end-user public key certificates,
intermediate CA certificates, and root certificates, as well as for users’ private keys.

X.509
X.509 is an International Telecommunication Union (ITU-T) standard for PKI. X.509
specifies, among other things, standard formats for public-key certificates. A public-
key certificate consists of the public portion of an asymmetric cryptographic key (the
public key), together with identity information, such as a person’s name, all signed
by a certificate authority. The CA essentially guarantees that the public key belongs
to the named entity.

Digital Certificates
A digital certificate is a special message that contains a public key and identify
information, such as the owner’s name and perhaps email address, about the owner.
An ordinary, end-user digital certificate is digitally signed by the CA that issued it to
warrant that the CA issued the certificate and has received satisfactory
documentation that the owner of the certificate is who he says he is. This warrant,
from a trusted CA, enables the certificate to be used to support digital signing and
authentication, and encryption of data uniquely for the owner of a certificate.

For example, Web servers frequently use digital certificates to authenticate the
server to a user and create an encrypted communications session to protect
transmitted secret information such as Personal Identification Numbers (PINs) and
passwords.

Similarly, an email message may be digitally signed, enabling the recipient of the
message to authenticate its authorship and that it was not altered during
transmission.

To use PKI technology in SecureZIP for iSeries for encryption and to attach digital
signatures, you must have a digital certificate.

Certificate Authority (CA)
A certificate authority (CA) is a company (usually) that, for a fee, will issue a public-
key certificate. The CA signs the certificate to warrant that the CA issued the
certificate and has received satisfactory documentation that the owner of the new
certificate is who he says he is.

Private Key
A digital certificate contains both private and public portions of an asymmetric
cryptographic key together with identity information, such as a person's name and
(possibly) email address. The private portion of the key is called the private key and

 27

is used to decrypt data encrypted with the associated public key and to attach digital
signatures.

A private key must be accessible solely by the owner of the certificate because it
represents that person and provides access to encrypted data intended only for the
owner.

SecureZIP for iSeries uses a private key maintained in x.509 PKCS#12 format.
This means that the private key cannot be accessed unless a password is entered for
each SecureZIP request.

Public Key
A public key consists of the public portion of an asymmetric cryptographic key in a
certificate that also contains identity information, such as the certificate owner’s
name.

The public key is used to authenticate digital signatures created with the private key
and to encrypt files for the owner of the key’s certificate.

For information on the digital enveloping process SecureZIP for iSeries uses for
certificate-based encryption, see the Secure .ZIP Envelopes whitepaper at the
PKWARE Web site.

Certificate Authority and Root Certificates
End entity certificates and their related keys are used for signing and authentication.
They are created at the end of the trust hierarchy of certificate authorities. Each
certificate is signed by its CA issuer and is identified in the “Issued By” field in the
end certificate. In turn, a CA certificate can also be issued by a higher level CA. Such
certificates are known as intermediate CA certificates. At the top of the issuing chain
is a self-signed certificate known as the root.

SecureZIP for iSeries uses public-key certificates in PKCS#7 format. The
intermediate CA certificates are maintained independently from the ROOT
certificates.

Types of Encryption Algorithms

FIPS 46-3, Data Encryption Standard (DES)
The FIPS (Federal Information Processing Standards) specification 46-3 formerly
specified the DES algorithm for use in Federal government applications. In 2004, the
specification was changed such that DES is no longer approved for Federal
government applications.

Triple DES Algorithm (3DES)
Triple DES is a more recent algorithm related to DES. Triple DES is a method for
encrypting data in 64-bit blocks using three 56-bit keys by combining three
successive invocations of the DES algorithm.

http://www.pkware.com/downloads/collateral/whitepapers/form.php?selected_wp=szmf
http://www.pkware.com/downloads/collateral/whitepapers/form.php?selected_wp=szmf

28

ANSI X9.52 specifies seven modes of operation for 3DES and three keying options:
1) the three keys may be identical (one key 3DES), 2) the first and third key may be
the same but different from the second key (two key 3DES), or 3) all three keys may
be different (three key 3DES). One key 3DES is equivalent to DES under the same
key; therefore, one key 3DES, like DES, will not be approved after 2004. Two key
3DES provides more security than one key 3DES (or DES), and three key 3DES
achieves the highest level of security for 3DES. NIST recommends the use of three
different 56-bit keys in Triple DES for Federal Government sensitive/unclassified
applications.

SecureZIP for iSeries uses three-key 3DES when Triple DES is selected as the data
encryption algorithm.

Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) encryption algorithm specified in FIPS 197
is the result of a multiyear, worldwide competition to develop a replacement
algorithm for DES. The winning algorithm (originally known as Rijndael) was
announced in 2000 and adopted in FIPS 197 in 2001.

The AES algorithm encrypts and decrypts data in 128-bit blocks, with three possible
key sizes: 128, 192, or 256 bits. The nomenclature for the AES algorithm for the
different key sizes is AES-x, where x is the size of the AES key. NIST considers all
three AES key sizes adequate for Federal Government sensitive/unclassified
applications.

Please see http://www.nist.gov/public_affairs/releases/g00-176.htm a press release
recapping NIST’s position

SecureZIP for iSeries uses AES as the default encryption algorithm.

Comparison of the 3DES and AES Algorithms
Both the 3DES and AES algorithms are considered to be secure for the foreseeable
future. Below are some points of comparison:

• 3DES builds on DES implementations and is readily available in many
cryptographic products and protocols. The AES algorithm is new; although
many implementers are quickly adding the algorithm to their products, and
protocols are being modified to incorporate the algorithm, it may be several
years before the AES algorithm is as pervasive as 3DES.

• The AES algorithm was designed to provide better performance (e.g., faster
speed) than 3DES.

• Although the security of block cipher algorithms is difficult to quantify, the
AES algorithm, at any of the key sizes, appears to provide greater security
than 3DES. In particular, the best attack known against AES-128 is to try
every possible 128-bit key (i.e., perform an exhaustive key search, also
known as a brute force attack)). By contrast, although three key 3DES has a
168-bit key, there is a “shortcut” attack on 3DES that is comparable, in the
number of required operations, to performing an exhaustive key search on
112-bit keys. However, unlike exhaustive key search, this shortcut attack
requires a lot of memory. Assuming that such shortcut attacks are not
discovered for the AES algorithm, the uses of the AES algorithm may be more
appropriate for the protection of high-risk or long-term data.

http://www.nist.gov/public_affairs/releases/g00-176.htm

 29

• The smallest AES key size is 128 bits; the recommended key size for 3DES is
168 bits. The smaller key size means that fewer resources are needed for the
generation, exchange, and storage of key bits.

• The AES block size is 128 bits; the 3DES block size is 64 bits. For some
constrained environments, the smaller block size may be preferred; however,
the larger AES block size is more suitable for cryptographic applications,
especially those requiring data authentication on large amounts of data.

See http://www.nist.gov/public_affairs/releases/g00-176.htm for a press release
describing NIST’s position on the two algorithms.

With a block cipher algorithm, the same plaintext block will always encrypt to the
same ciphertext block whenever the same key is used. If the multiple blocks in a
typical message were to be encrypted separately, an adversary could easily
substitute individual blocks, possibly without detection. Furthermore, data patterns
in the plaintext would be apparent in the ciphertext. Cryptographic modes of
operation have been defined to alleviate these problems by combining the basic
cryptographic algorithm with a feedback of the information derived from the
cryptographic operation.

FIPS 81, DES Modes of Operation, defines four confidentiality (encryption) modes for
the DES algorithm specified in FIPS 46-3: the Electronic Codebook (ECB) mode, the
Cipher Block Chaining (CBC) mode, the Cipher Feedback (CFB) mode, and the
Output Feedback (OFB) mode.

SecureZIP for iSeries uses Cipher Block Chaining for data encryption.

RC4
The RC4 algorithm is a stream cipher designed by Rivest for RSA Security. It is a
variable key-size stream cipher with byte-oriented operations. The algorithm is
based on the use of a random permutation. Analysis shows that the period of the
cipher is overwhelmingly likely to be greater than 10100. Eight to sixteen machine
operations are required per output byte, and the cipher can be expected to run very
quickly in software. Independent analysts have scrutinized the algorithm and it is
considered secure.

RC4 is used for secure communications, as in the encryption of traffic to and from
secure web sites using the SSL protocol.

Key Management
The proper management of cryptographic keys is essential to the effective use of
cryptography for security. Keys are analogous to the combination of a safe. If the
combination becomes known to an adversary, the strongest safe provides no security
against penetration. Similarly, poor key management may easily compromise strong
algorithms. Ultimately, the security of information protected by cryptography directly
depends on the strength of the keys, the effectiveness of mechanisms and protocols
associated with keys, and the protection afforded the keys.

Cryptography can be rendered ineffective by the use of weak products, inappropriate
algorithm pairing, poor physical security, and the use of weak protocols. All keys
need to be protected against modification, and secret and private keys need to be
protected against unauthorized disclosure. Key management provides the foundation

http://www.nist.gov/public_affairs/releases/g00-176.htm

30

for the secure generation, storage, distribution, and destruction of keys. Another role
of key management is key maintenance, specifically, the update/replacement of
keys.

Further information is available on key management at the NIST Computer Security
Resource Center web site: http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

Passwords and PINS
FIPS 112, Password Usage, provides guidance on the generation and management of
passwords that are used to authenticate the identity of a system user and, in some
instances, to grant or deny access to private or shared data. This standard
recognizes that passwords are widely used in computer systems and networks for
these purposes, although passwords are not the only method of personal
authentication, and the standard does not endorse the use of passwords as the best
method.

The password used to encrypt a file with SecureZIP may be from 1 to 260 characters
in length. Different passwords may be used for various files within a ZIP archive,
although only one password may be specified per run.

The password is not stored in the ZIP archive and, as a result, care must be taken to
keep passwords secure and accessible by some other source.

Recipient Based Encryption
Password-based encryption depends on both the sender and receiver knowing, and
providing intellectual input (the password) in clear text. The password is used to
derive a binary master session key for each decryption run. No key information is
kept within the ZIP archive, so both parties must retain the password in an external
location.

Recipient-based encryption provides a means by which the master session key (MSK)
information can be hidden, protected, and carried within the ZIP archive. This is done
by using technique known as digital enveloping with public key encryption. The
technique requires that the creating process have a copy of the recipient's public key
digital certificate, which is used to protect and store the MSK. In addition, the
receiving side must have a copy of the recipient's private key digital certificate. With
these two pieces of information in place, there is no need for users to retain or recall
a password for decryption.

Integrity of Public and Private Keys
Public and private keys must be managed properly to ensure their integrity. The key
owner is responsible for protecting private keys. The private signature key must be
kept under the sole control of the owner to prevent its misuse. The integrity of the
public key, on the other hand, is established through a digital certificate issued by a
certificate authority that cryptographically binds the individual’s identity to his or her
public key. Binding the individual’s identity to the public key corresponds to the
protection afforded to an individual’s private signature key.

http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

 31

A PKI includes the ability to recover from situations where an individual’s private
signature key is lost, stolen, compromised, or destroyed; this is done by revoking
the digital certificate that contains the private signature key’s corresponding public
key. The user then creates or is issued a new public/private signature key pair, and
receives a new digital certificate for the new public key.

The certificate authority (CA) plays a critical role in ensuring the integrity of public
keys in the PKI. Upon being presented with proper evidence of identity (usually
through a separate entity called a registration authority), the CA issues a digital
certificate which contains the applicant’s public key, identity, and other information
(such as duration of the certificate), all signed by the CA’s private signature key. The
certificate may then be distributed or placed in publicly available databases, called
repositories.

Data Encryption
SecureZIP for iSeries security functions include strong encryption tools using RSA
BSAFE and the PKWARE implementation of the Advanced Encryption Standard.
SecureZIP for iSeries provides the option for password encryption using DES, RC4,
3DES and AES.

RSA High-Quality Security - RSA Security submits its Crypto-C products for FIPS
140 testing and validation. FIPS 140-1 and FIPS 140-2 are U.S. Government
standards which specify the security requirements to be satisfied by a cryptographic
module. RSA Security supports this testing and certification with over 20 years of
experience in the security industry.

SecureZIP for iSeries uses a multi-layer key generation process, based on a user-
specified password of up to 260 characters, and/or a user’s digital certificate, that
creates a unique internal key for each file being processed. In addition, the same
password will result in a different system generated key for each file.

SecureZIP for iSeries also implements the use of Cipher Block Chaining (CBC) to
further enhance industry standard encryption algorithms. This feature ensures that
each block of data is uniquely modified, further protecting the data from fraudulent
access.

SecureZIP for iSeries encryption is activated through the use of the PASSWORD
and ENTPREC parameters. If a value is present for either setting, whether through
commands or default settings, then encryption will be attempted in accordance with
other settings (for example, -ADVCRYPT); however, if ADVCRYPT(*NONE) is
specified, then encryption will be bypassed.

Operating System Levels
V5R1M0 or above is required to run certificate-based operations.

Windows Compatibility
When using BSAFE AES encryption with recipients, there is a cross-system
compatibility issue to be addressed by the user community. Windows operating
systems running pre-Windows XP may experience a decryption problem depending
on the state of the private-key certificate on the workstation. During the Windows
certificate import process, a dialog check-box "Mark the private key as exportable"

32

may be selected. If this option was not selected, then Windows will not allow an AES
encrypted file to be decrypted unless the master session key was wrapped with
3DES.

The setting of the parameter is enterprise wide and is set using the PKCFGSEC
command. When turned on, the MSK3DES flag is set in the NDH/DIB; indicating that
the master session key information is protected with 3DES when recipients are
specified.

PKZIP for Windows has a variance in processing for 6.0 and 7.x due to OAEP
processing. PKZIP for Windows 5.0 through 6.0 used OAEP processing. However,
that was found to be incompatible with SmartCards, so 6.1 and above began setting
the NO_OAEP flag in the NDH/DIB flags and stopped creating OAEP encryption-mode
files.

SecureZIP for iSeries will always set NO_OAEP, therefore PKZIP for Windows 5.0 -
6.0 will not be able to read recipient-based files from the large platforms.

SecureZIP for iSeries should be able to detect whether the NO_OAEP flag is set
and successfully extract either. No change in logic is required within the SecureZIP
high-level code, but the low-level EVTCERTD code should handle the switch based on
the flag.

What is Filename Encryption?
Someone who cannot decrypt the contents of an archive may still be able to infer
sensitive information just from the unencrypted names of files. To prevent this, you
can encrypt the names of files in addition to their contents. Encrypted file names can
be viewed in the clear—that is, unencrypted—only when the archive is opened by an
intended recipient, if the archive was encrypted using a recipient list, or by someone
who has the password, if the archive was encrypted using a password.

SecureZip for iSeries encrypts file names using your current settings for (strong)
encryption method and algorithm. File names can be encrypted using either strong
password encryption or a recipient list (or both). You must use one of the strong
encryption methods: you cannot encrypt file names using traditional,
ADVCRYPT(ZIPSTD), which uses a 96-bit key.

Encrypting names of files and folders in an archive encrypts and hides a good deal of
other internal information about the archive as well. To encrypt file names,
SecureZip for iSeries encrypts the archive's central directory, where virtually all
such metadata about the archive is stored. Be aware, however, that archive
comments are not encrypted even when you encrypt file names. Do not put sensitive
information in an archive comment.

User Encryption Examples
Below are examples of how to invoke encryption processing using PKZIP commands.

Zip Compress File(s) and Write to an Archive File
This is the main PKZIP compression screen. Here you specify the method and mode
of encryption.

 33

 File Compression 8.0 (PKZIP)

 Type choices, press Enter.

 Archive Zip File name '/yourpath/encryption/as400.des3.zip'

 List Include file or pattern . . '/yourpath/encryption/*.txt'
 + for more values

 Type of processing *ADD *ADD, *UPDATE, *FRESHEN ..
 Compression Level *SUPERFAST *FAST, *NORMAL, *MAX...
 File Types *DETECT *DETECT *TEXT *BINARY
 Advance Encryption :
 Method > 3des ZIPSTD, AES128, AES192...
 Mode > BSAFE PKWARE, BSAFE

 More...
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
 Parameter ARCHIVE required.

Placing the cursor on the “Method” and hitting F4 presents the next screen that
allows you to select one of the encryption methods to use.

 Specify Value for Parameter ADVCRYPT

 Type choice, press Enter.
 Method > 3DES

 ZIPSTD
 AES128
 AES192
 AES256
 3DES
 DES
 RC4_128

When the next screen appears if you do not enter a password no encryption
processing is completed on the file(s) to be archived. If you desire encryption, you
must enter the password twice; once in the Archive Password and again in the Verify
Password.

 File Compression 8.0 (PKZIP)

Type choices, press Enter.

Archive Password

Verify Password

Archive File Type *ifs *DB, *IFS
Files to Zip Type *ifs *DB, *IFS, *IFS2, *DBA, *SPL
Before/After Selection *NO *NO, *BEFORE, *AFTER
Date for Selection 0 Date mmddyyyy
File Name actions *SUFFIX *NONE, *DROP, *SUFFIX
External Conversion Flags . . . *NONE Character value, *NONE
Create Self Extract Archive . . *MAINTAIN *MAINTAIN, WINDOWS, AIX...
 Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

34

Following is the output of the PKZIP run.

SecureZIP for iSeries (tm) Version 8.0.0, 2004/02/13
Copyright. 2004 PKWARE, Inc. All Rights Reserved.
PKZIP (R) is a registered trademark of PKWARE (R), Inc.
Scanning files in *IFS for match ...
Found 2 matching files
Compressing /yourpath/encryption/appnote.txt in BINARY mode
Add /yourpath/encryption/appnote.txt -- Deflating (69%) encrypt(BSAFE 3DES)
Compressing /yourpath/encryption/readme.txt in BINARY mode
Add /yourpath/encryption/readme.txt -- Deflating (58%) encrypt(BSAFE 3DES)
PKZIP Compressed 2 files in Archive /yourpath/encryption/as400.des3.zip
PKZIP Completed Successfully

Commands generated from the PKZIP screen using the retrieve key after the PKZIP
run.

 Command Entry COSMOS
 Request level: 4
 Previous commands and messages:

 (No previous commands or messages)

 Bottom
 Type command, press Enter.
 ===> PKZIP ARCHIVE('/yourpath/encryption/as400.des3.zip')
FILES('/yourpath/encryption/*.txt') ADVCRYPT(3DES BSAFE) PASSWORD() VPASSWORD()
TYPARCHFL(*IFS) TYPF

Display the contents of an Archive File
When the files within an archive have strong encryption the “!” (bang) character is
placed in front of the file name to inform you that you must have the correct
password to view or extract the file.

 File Extraction 8.0 (PKUNZIP)

Type choices, press Enter.

Archive Zip File name '/yourpath/encryption/as400.des3.zip'

List Include file or pattern . . *ALL
 + for more values

Type of processing *VIEW *VIEW, *EXTRACT, *NEWER...
File Types *DETECT *DETECT *TEXT *BINARY ...

 Press ENTER to end terminal session.
 SecureZIP for iSeries (tm) Version 8.0.0, 2004/02/13
 Copyright. 2004 PKWARE, Inc. All Rights Reserved.
 PKZIP (R) is a registered trademark of PKWARE (R), Inc.
 PKZIP for iSeries(tm) is running under Beta release B1
 Archive: /yourpath/encryption/as400.des3.zip 33451 bytes 2 files

 35

 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 97182 Defl:F 30230 69% 01-30-04 13:16 223c2ea4 !/yourpath/encryption/
 appnote.txt
 5747 Defl:F 2710 53% 10-06-03 15:14 d193af9b !/yourpath/encryption/
 readme.txt
 -------- ------- ---- -------
 102929 32940 68% 2 files
 PKUNZIP extracted 0 files
 PKUNZIP Completed Successfully

Incorrect Password Use
The following illustration is an example of what to expect if you enter an incorrect
password. The error message indicates that the file(s) were skipped because of an
incorrect password and that PKUNZIP completed with errors.

 PKZIP for iSeries(tm) Version 8.0.0, 2004/02/17
 Copyright. 2004 PKWARE, Inc. All Rights Reserved.
 PKZIP (R) is a registered trademark of PKWARE (R), Inc.
 PKZIP for iSeries(tm) is running under Beta release B1
 PKUNZIP Archive: /yourpath/encryption/as400.des.zip
 Archive Comment:"PKZIP for iSeries by PKWARE"
 Searching Archive /yourpath/encryption/as400.des.zip for files to extract
 skipping: /yourpath/encryption/appnote.txt incorrect password
 skipping: /yourpath/encryption/readme.txt incorrect password
 Caution: zero files tested in /yourpath/encryption/as400.des.zip.
 2 file(s) skipped because of incorrect password
 PKUNZIP Completed with Errors
 Press ENTER to end terminal session.

36

3 ZIP Files

A ZIP archive is the storage facility for files that are compressed (or simply stored)
using the PKZIP product. The basic archive can hold up to 65,535 files, which may
have been compressed by up to 99% of their original size. Data integrity is validated
by a cyclic redundancy check (CRC) to maintain integrity of the data from the
compression through the extraction process. If the archive contains the ZIP64
archive format, the archive can support more than the 65,535 files and can be larger
than 4 GB (see “Large Files Considerations” in Chapter 1).

In addition to the data, file attributes are retained, allowing extraction of the same
file characteristics without the need of control card specifications. An archive can
exist in three possible states during processing, described as “old archive,”
“temporary archive,” and “new archive.” An explanation of the functions of each of
these is described in the sections below.

A ZIP archive is transferable between platforms. That is, files that are compressed by
PKZIP on one platform may be extracted by PKZIP on a different platform,
maintaining identical data.

This chapter describes the types of files used by PKZIPi and provides a description
of the way in which they are accessed by PKZIPi ZIP archives.

PKZIPi (by default) creates a new archives in the *DB file system as members of
PF-DTA files with 132-byte records. The archive file is given a text field of “file
created by SecureZIP for iSeries” or “file created by PKZIP for iSeries”. The
archive member is given a text field of “Member created by SecureZIP for iSeries”
or “Member created by PKZIP for iSeries”. If you wish to create your own archive
(perhaps to have a larger record size, for performance), then you can do so, but try
to adhere to the following:

• When you create the file, do not create any members in it.

• After having created the file, change the MAXMBRS parameter for the file
from 1 to *NOMAX.

A ZIP archive holds files internally in one of several formats, which are compatible
with other platforms supported by PKZIP. These formats are described here, and
several commands are available for transforming files into one of these formats as
they are compressed. You may specify in which format a file is stored using the
FILETYPE(*BINARY) or FILETYPE(*TEXT) command parameters. OS/400 SAVF are
always stored as *BINARY type. If you do not specify FILETYPE(*BINARY) or

 37

(*TEXT), then the PKZIP and PKUNZIP programs both will default to
FILETYPE(*DETECT). For more information, see FILETYPE(*DETECT).

 “Old” ZIP Archive

Starting with PKZIPi Version 8.2, an optional input archive can be specified that can
be a different name than the archive that will be created for an output archive file. If
this is present, it is considered to be the “Old” ZIP archive. Otherwise the first
ARCHIVE parameter is considered to be the “Old” ZIP archive.

The new input archive parameter (2nd option of ARCHIVE) allows the ability to
preserve the input archive and create a new archive with a different name. This
would allow the new archive to take on new attributes such as FNE or non FNE
archive. The one requirement is that both archives must reside on the same file
system such as IFS or the QSYS Library file system.

When there is not inputted archive, the 1st option of the ARCHIVE parameter for
PKZIP is known as the old ZIP archive, except when the TYPE(*ADD) parameter is
being used to create a new ZIP archive. The old ZIP archive may have been created
by PKZIPi during an earlier operation or may have been created by PKZIP on
another platform and transferred from there. When a ZIP archive is being updated
(or when PKUNZIP is extracting files from a ZIP archive), the necessary details are
taken from the old ZIP archive. It should be noted that when PKZIPi is updating a
ZIP archive, it takes the necessary data from the old ZIP archive, merges it with any
new data, and transfers it to a new ZIP archive (in a temporary member in the same
iSeries file as the old archive). When all updating is completed, PKZIPi deletes the
old ZIP archive and then renames the new ZIP archive to the same name as the old
ZIP archive. For this reason a file containing a ZIP archive should allow for at least
one temporary member to be allocated. When PKZIPi creates an archive file, it uses
MAXMBRS(*NOMAX).

 “Temporary” Archive File

A temporary archive file refers to an archive work in progress. PKZIPi will always
use a temporary archive file and its definition depends on the file system. If the file
system type is IFS, then the temporary archive file will be in the same directory of
the specified new archive. If the file system type is QSYS, the temporary archive file
will become a member of the specified archive file. The temporary file or member
will have a unique name PKnnnnnnnn (where nn represents an internal random
number). When the file has been completed successfully, the temporary name will be
renamed to the specified name in the ARCHIVE parameter. If this is a process in
which an old archive is being updated, then (if successful) the old archive will be
deleted before the rename. If a problem occurs, the temporary archive may stay
with the temporary name. View the job log if this happens to determine the status of
the archive.

38

“New” ZIP Archive

When the processing of the temporary dataset is finalized, PKZIPi creates a new
ZIPPED archive that is the modified “after” version of the old archive. The modified
name of the old archive and specified allocation information is transferred
automatically to the new archive after updating, and the old Archive is deleted. A
new ZIP archive is created when an old ZIP archive is updated, or when a
TYPE(*ADD) parameter (see Chapter 7) is used with PKZIPi where there is no old
ZIP archive.

Self-Extracting Archive
The self extracting programs are held as binary entities in the file PKZIPSFX of the
PKZIPi library. The appropriate member is loaded and the executable data copied to
the beginning of the Archive as a preamble when requested.

The resulting archive can still be processed by PKZIPi as a normal ZIP Archive.

When an input archive containing a self-extraction preamble is passed to PKZIPi for
PKZIP processing and no value is supplied by SELFXTRACT, the default of *MAINTAIN
will keep any preamble if one exist. If the parameter SELFXTRACT(*REMOVE) is
supplied then the PREAMBLE is removed when writing the new archive.

A self-extracting archive can be created from an existing archive by using
SELFXTRACT with a valid self-extractor. If the original archive contained a preamble,
it will be removed and the newly specified preamble will be inserted.

When transferring a self-extracting archive to a target system, be sure to transfer
the archive in binary format and adhere to requirements for executables in that
environment. (For example, a Windows program should be saved with an application
extension of EXE, and a UNIX file attribute should have executable authorization set
via the UNIX chmod command).

The self-extraction programs provided are at the 2.5 level of PKZIP. As such, the
following restrictions apply to the operation of the self-extraction program(s). Care
should be taken to control the creation of the self-extracting archive within these
restrictions, although the resulting archive may still be processed with PKZIP
programs at higher levels that support these features.

• The number of files in the archive should be limited to 65,535 or less.

• Strong encryption is not supported.

• The size of the archive should not exceed 2 gigabytes: Most Windows and
UNIX systems will not load executables larger than 2 GB.

• The uncompressed size of individual files should be less than 2 gigabytes for
target systems which are Windows or LINUX (less than 4 gigabytes for other
UNIX systems).

To assist in the usage of the self-extraction programs on the target systems, some of
the command parameters are listed below. Note that some parameters may not be
valid on all systems. By executing the transferred self-extracting archive on the
target system with “-help”, the commands syntax appropriate to that system will be
displayed.

 39

Usage: sfx.exe [options] [.ZIP archive] [files...]

Where sfx.exe = the name of the self-extracting executable file

Options:
after extract files that are newer than or equal to a specified date
 suboptions:
 "date specification" [format: mmddyy or mmddyyyy]
 e.g.: sfx.exe -aft=12311999 file.zip

before extract files that are older than a specified date
 suboptions:
 "date specification" [format: mmddyy or mmddyyyy]
 e.g.: sfx.exe -bef=12311999 file.zip

console display the contents of specified archived files on your screen
 e.g.: sfx.exe -con= file.zip readme.txt

directories recreate directory path while extracting including any
 sub-directories
 e.g.: sfx.exe -dir file.zip

exclude exclude specified files from being extracted
 e.g.: sfx.exe -exc=*.txt file.zip

extract extract files from the .ZIP archive
 suboptions:
 all [extract everything in archive]
 freshen [extract if newer than destination copy]
 update [extract if newer or not in destination directory]
 e.g.: sfx.exe -ext=all file.zip

help display help screen
 e.g.: sfx.exe -help

Id preserve original file uid/gid. Must be root/file owner (UNIX only)

include include specified files for extraction
 e.g.: sfx.exe -inc=*.txt file.zip

larger extract files that are the specified size (in bytes) and larger
 suboptions:
 a numerical value (in bytes) that indicates a minimum desired
 file size
 e.g.:sfx.exe -larger=400

license displays license information
 e.g.: sfx.exe -lic

locale reads and/or adjusts the locale variable for date and time format
 input
 suboptions:
 environment [read system variable and apply accordingly]
 "valid country name" [for example locale=germany]
 e.g.: sfx.exe -loc=us -aft=12311999 file.zip

lowercase change filenames to lower case on extraction
 e.g.: sfx.exe -lowercase

mask remove specified file attributes upon extraction
 suboptions:
 archive [mask archive attribute from file(s)/folder(s)]
 hidden [mask hidden attribute from file(s)/folder(s)]
 system [mask system attribute from file(s)/folder(s)]
 readonly [mask read-only attribute from file(s)/folder(s)]
 none [do not mask attributes from file(s)/folder(s)]
 all [mask all attributes from file(s)/folder(s)]
 e.g.: sfx.exe -mask=archive,readonly file.zip

more display output one screen at a time
 e.g.: sfx.exe -more file.zip

40

newer process only those files that are newer than a specified
 (calendar) day in the past
 suboptions:
 a numerical value (in calendar days) that indicates some
 date in the past relative to the current date
 e.g.: sfx.exe -newer=2

noextended suppress the extraction of extended attributes
 e.g.: sfx.exe -noex file.zip

older process only those files that are older than a specified
 (calendar) day in the past
 suboptions:
 a numerical value (in calendar days) that indicates some
 date in the past relative to the current date
 e.g.: sfx.exe -older=2

overwrite overwrite existing files
 prompt [prompt before overwriting]
 all [always overwrite]
 never [never overwrite]
 e.g.: sfx.exe -o=all file.zip

password specify a decryption password
 e.g.: sfx.exe -pass=grendel file.zip

print print the specified archived file
 suboptions:
 "print device name" [for example print=lpt1]
 e.g.: sfx.exe -print=lpt2 file.zip readme.txt

silent suppress warning messages when extracting
 e.g.: sfx.exe -silent file.zip

smaller extract files that are the specified size (in bytes) and
 smaller
 suboptions:
 a numerical value (in bytes) that indicates a maximum desire
 file size
 e.g.:sfx.exe -smaller=400

sort sort files when extracting
 suboptions:
 crc [sort by crc value]
 date [sort by date of the file]
 extension [sort by file extension]
 name [sort by file name]
 natural [sort in the order that the file was archived]
 ratio [sort by compression ratio]
 size [sort by file size]
 none [do not sort]
 e.g.: sfx.exe -sort=size file.zip

test test the integrity of archived files
 suboptions:
 all [test everything in archive]
 freshen [test if newer than destination copy]
 update [test if newer or not in destination directory]
 e.g.: sfx.exe -test=all file.zip

times preserve specified file date/time stamp
 suboptions:
 access [preserve accessed date/time stamp on extraction]
 modify [preserve modified date/time stamp on extraction]
 create [preserve created date/time stamp on extraction]
 all [preserve all date/time stamps on extraction]
 none [do not preserve date/time stamps on extraction]
 e.g.: sfx.exe -time=access,modify file.zip

translate translate the end of line sequence for give operating system

 41

 suboptions:
 DOS [convert to DOS style line endings]
 MAC [convert to MAC style line endings]
 unix [convert to unix style line endings]
 e.g.:sfx.exe -translate=unix

version display SFX version and return appropriate value to the shell
 suboptions:
 major [return major version number]
 minor [return minor version number]
 step [return step or patch version number]
 e.g.: sfx.exe -ver=step

volume restore the volume label when extracting
 e.g.: sfx.exe -vol file.zip

warning prompt to continue after warning message
 e.g.: sfx.exe -warn file.zip

Data Format - Text Records vs. Binary Records
Binary data is stored in a ZIPPED archive in its original format. Binary data may be
graphics or numbers that are already in “computer format.” Therefore, no translation
is done, and EBCDIC will remain EBCDIC. The length of binary records in UNZIP
processing is determined by the archive’s fixed-length records. PKZIPi will fill the
available block automatically according to allocation specifications.

In the context of ZIPPED archives, a “text file” is one that is stored in the ASCII
format. A text file contains records of data, each separated by a delimiter to signify
the end of the record.

Note: An EBCDIC file containing text information (such as source code) can be
stored in its original format by using BINARY, but it is not considered to be a “text”
file within the ZIP architecture.

PKZIPi uses the default line delimiter CR-LF (X’0D0A’) at the end of each text
record. Text file members in the QSYS library file system use new line characters
(NL=X’15’) internally. PKZIPi will handle the CR-LF and NL in both extraction and
compressions automatically.

At the time of PKUNZIP file extraction, PKZIPi will convert text data from ASCII to
EBCDIC by using a translation table. During installation, several translation tables
are available, and the customization process will select one of the translation tables
as a default. Additional translation tables may be created through the customizing
procedure.

Situations may arise in unique platform interchanges, or when working with text files
from other countries where the default text translation table is not adequate. Users
may select any available translation table by using TRAN and FTRAN parameters.

PKZIPi extracts text records stored in the ZIP archive by examining data for record
delimiter and file terminator indicators. Using these indicators, PKZIPi aligns records
in accordance with target file attributes.

Text files (such as program source code) are held within an archive using the ASCII
character set for compatibility with other versions of PKZIP®. For these to be usable
on OS/400, they must be converted to the IBM EBCDIC character set. Additionally,
the carriage return and line feed characters must be removed before writing lines to

42

a file because OS/400 files are record-based and do not use control characters to
separate records or lines. Text files usually have spaces at the end of a line. When
using the text file handlers, PKZIPi has less data to read because the input/output
routines remove trailing spaces and replace them with a new line character. This
improves PKZIPi performance.

When extracting files from an archive, PKZIPi must know whether to perform text
conversions. PKZIPi stores an indicator in the archive file’s local header defining if a
file is binary or text-based. Because this indicator may be wrong in some
circumstances, use the FILETYPE keyword to specify whether text conversions are
required. When adding files to an archive, PKZIPi will flag the file according to the
FILETYPE used.

PKZIPi uses translation tables that should be suitable for most customers, but some
users may wish to alter the tables. The procedure for changing the translation tables
is discussed. If text files are only used on iSeries, then the FILETYPE(*EBCDIC) may
be used. This uses iSeries files “as is” for the file (which are faster for text files), but
does not translate the data to ASCII. This will provide a small improvement in
performance.

Additionally, PKZIPi will translate each character in a text file from EBCDIC
character format to ASCII character format by default. This is done using one of the
two internal translation tables, which are named UKASCII and USASCII. It is
recognized that these translation tables may not suffice for all countries or all
situations, especially on those sites where text files are received from several
different countries for processing into a single format. The source of the translation
tables used by the PKZIP and PKUNZIP programs has been supplied, together with
instructions for modifying the tables to create additional files (see Appendix D for
details). This enables sites to modify the translation table as required.

In a case where FILETYPE is neither *TEXT nor *BINARY, *DETECT is the default
mode. PKZIP will read up to 64K of data from the input file and scan it for non-
translatable text characters using the active text translation table. If any characters
will not translate successfully using this method, the entire file will be treated as if
*BINARY has been used.

Note: One exception to this is X’00’ or the NULL terminator character, which is
commonly used in C language. The NULL character will be allowed within the files. If
file type is of a file in the archive is unknown whether it is text or binary, the user
may use the TYPE(*VIEW) and VIEWOPT(*DETAIL) parameters to examine the file
attributes.

File Attributes
Within each ZIP archive there are two different directories providing information
about the files held in that archive. A local directory is included at the front of each
file, with information pertaining to each file (for example: file size and date ZIPPED),
and a central directory is located at the end of the ZIP archive. The central directory
lists the complete contents of the ZIP archive and is the primary source of
information for UNZIP processing.

PKZIPi stores extended attributes about the file that can be useful in recreating the
file during UNZIP processing. See the System Administrator’s Guide.

 43

PC Shared Drives Format
One common mistake made when extracting a text file to a shared drive folder in the
IFS where the file will be used by a Windows application is to extract the file in text
mode. Extracting a file as a TEXT file on the iSeries will cause PKUNZIP to translate
the file to the EBCDIC format since this is the native iSeries format. The Windows
application expects the file to be in ASCII, so therefore this file should be extracted
using binary, since the files are stored in ASCII in the archive.

44

4 File Extraction Process

Extracting Files to the QSYS Library File System
When extracting files to the QSYS library file system using TYPFL2ZP(*DB), some
items to consider are 1) does the file exist or will a new file be create?, 2) did the file
come from PKZIPi or did it come from another platform?, 3) are the files text type
files from another platform where I need to know the record length, etc. These are
just a few questions that might impact how you want to extract the files.

If the file does not exist and if the file did not come from PKZIPi, you should provide
a record length for the file with the parameter DFTDBRECLN. If the file is coming
from PKZIPi or PKZIP for zSeries the record length will be in the extra data. If the
file is from PKZIPi and the parameter was DBSERVICE(*YES), the complete
database definition from the extract data for database will be used to create the file.

If the file is to be created as text and the record length is too short then you will
receive messages indicating the records are being truncated.

Two common parameters that are used to alter or guide the extraction process are
the EXDIR and DROPPATH parameters. EXDIR provides the path library or library/file
that the file will be extracted to when no library or path exist for the files in the
archive. Of course, this is where the DROPPATH comes in to drop the first path or
library with *LIB or to remove all paths in a name with *ALL.

For example, files in an archive might look like this:

Archive/#1:
My Document/myfiles/test/myheader.txt
My Document/myfiles/test/mydata.txt
My Document/myfiles/test/mytrailer.txt

Archive/#2:
 QGPL/QCLSRC/MYCL01
 QGPL/QCLSRC/MYCL02
 QGPL/QCLSRC/MYCL03
 QGPL/QCLSRC/MYCL04

In archive #1 lets assume that all three text files are of different records lengths. If
we want to extract each with their own length, we would have to make three runs to

 45

create the files with different parameters. Or we could use CRTPF and create each of
the files so the files would exist with the proper record length.

 PKUNZIP ARCHIVE('Archive/#1') FILES('My
Document/myfiles/test/myheader.txt') TYPE(*EXTRACT)
EXDIR('MYLIB/MYHEADER') DROPPATH(*ALL) DFTDBRECLN(50)
CVTTYPE(*DROP)

 PKUNZIP ARCHIVE('Archive/#1') FILES('My Document/myfiles/test/mydata.txt')
TYPE(*EXTRACT) EXDIR('MYLIB/MYDATA') DROPPATH(*ALL) DFTDBRECLN(150)
CVTTYPE(*DROP)

 PKUNZIP ARCHIVE('Archive/#1') FILES('My
Document/myfiles/test/myheader.txt') TYPE(*EXTRACT)
EXDIR('MYLIB/MYTRAILER') DROPPATH(*ALL) DFTDBRECLN(20)
CVTTYPE(*DROP)

The commands above would create three files in library MYLIB, with all files having
different record lengths.

Now suppose the files already exist with the names and record lengths. In this case,
we could do all three files at once with:

 PKUNZIP ARCHIVE('Archive/#1') TYPE(*EXTRACT) EXDIR('MYLIB/?MBR')
DROPPATH(*ALL) CVTTYPE(*DROP) OVERWRITE(*YES)

The MBR will force each member name to also become the file name.

In archive #2, let’s assume that we want to extract the CL source member and place
them in a different library call MYNEWLIB. If the QCLSRC file does not exist and the
archive was not built with DBSERVICE(*YES), then you would need to do a

 CRTSRCPF FILE(MYNEWLIB/QCLSRC)

to have the file setup correctly for source files. If the QCLSRC file already exist in
MYNEWLIB or the archive was built with DBSERVICE(*YES), then no special handling
is required.

Authority Settings
When extracting files into the QSYS library file system, whether the files came from
the AS/400 or another platform, the authorities are not taken from the archive, but
from the user’s current environment settings. The file’s authority is not stored in the
archive.

If a library is required to be created, PKUNZIP would create the library as if the
current user was issuing a CRTLIB command. For standard settings, it might create
the library with the following authority settings:

 Data --Object Authorities--
User Authority Exist Mgt Alter Ref
*PUBLIC *RWX
USER *RWX X X X X.

If the file does not exist, PKUNZIP will be required to create the file. If the file does
exist no authorities are changed. If the file is created, the authority will be the same
as if the user was issuing a CRTPF command in their environment. For most standard
settings, it would create the file with the following authority settings:

46

 Data --Object Authorities--
User Authority Exist Mgt Alter Ref
*PUBLIC *RWX
MYOWNER *RWX X X X X

Extracting Files to the IFS
When extracting files to the integrated file system with TYPFL2ZP(*IFS), record
lengths are not a concern as they were in the QSYS library file system. The main
considerations when extracting to the IFS is “what paths do you want for the file, or
should the file be stored in EBCDIC or ASCII”.

Path Considerations
If the name of files in the archive, starts with ‘/’, then with no other changes this will
be extracted to the root of the system with the first name in the path. This form of
pathname is called a fully qualified path.

If the name does not start with a ‘/’, the item will be extracted to the paths based on
the current directory (DSPCURDIR). This form of pathname is called a relative path.

In both cases if the path(s) does not exist, the path(s) will be created with the
attributes of the parent folder.

Changing the path(s)
In cases where the path that is stored with a name of the file in archive is not
desired, then using the EXDIR and DROPPATH parameters should help guide the file
to where it should be placed.

Using EXDIR, you can define the path of the file(s) that will be extracted. If you need
to remove the path of the file in the archive, you can use DROPPATH(*ALL) to
remove all the paths before extracting or you can use DROPPATH(*LIB) to remove
only the first path name.

Again the coding of EXDIR follows the same rule with regards to fully qualified path
or relative path.

File Type Considerations
When extracting a file, the decision to whether the contents of file should be stored
in ASCII or EBCDIC needs to be made.

If the file is not a text file, it does not matter and should be stored as binary. If the
file is text, and will be used by a PC program, chances are the data is expected to be
in ASCII. Since the files are stored in the archive as ASCII, these files should be
extracted as TYPEFILE(*BINARY). If the file is to be used by an AS/400 application or
will be translated later, then chances are the file should be stored in EBCDIC. In this
case use TYPEFILE(*TEXT) to extract the file in EBCDIC.

 47

Authority Settings
If directories are required to be created during the extraction, the authority settings
will be created according to the create directory definitions of the DTAAUT(*INDIR)
and OBJAUT(*INDIR) parameters.

The authority for the directory being created is determined by the directory it is
being created in. The directory immediately preceding the new directory determines
the authority. A directory created in the root is assigned the public authority given to
objects in the root directory. A directory created in QDLS for a folder defaults to
*EXCLUDE for a first level folder. If created in the second level or greater, the
authority of the previous level is used. The QOpenSys and root file systems use the
parent directory's DTAAUT value.

The object authority is based on the authority for the directory where this directory is
being created.

For IFS files, the access permissions flags of the file are captured. For example:

• S_IRUSR - Read permission for the file owner

• S_IWUSR - Write permission for the file owner

• S_IXUSR - Search permission (for a directory) or execute permission (for a
file) for the file owner

• S_IRGRP - Read permission for the file's group

• S_IWGRP - Write permission for the file's group

• S_IXGRP - Search permission (for a directory) or execute permission (for a
file) for the file's group

• S_IROTH - General read permission

• S_IWOTH - General write permission

• S_IXOTH - General search permission (for a directory) or general execute
permission (for a file)

These access permission flags will be set for the owner that is running the PKUNZIP
job and not the original owner.

Other user permissions from the parent folder will also be set for the file.

For example, the folder being extracted into has *PUBLIC as *EXCLUDE, the
extracted file will also have *PUBLIC as *EXCLUDE.

Extracting zSeries Variable Length Records (RDW/ZDW)
In the zSeries, PKZIP can compress variable length records and store the files known
as RDW or ZDW into an archive. The format of these records contains a 4 byte
length (store in little Endian) followed by the record itself for that length. These
records are stored in binary, therefore EBCDIC.

By using the TYPE(*DETECT), PKZIP will remove the record length before extracting
the records. The ending format will differ depending on if the extraction is to a
database file or to the IFS.

48

To extract to a fixed length database file, each record will be extracted and placed in
the database forcing each record to be a fixed record in the database with no
translation.

To extract to the IFS, each record will have a New Line (NL 0x15) character inserted
at the end of each record. The records are still variable in length but with a
separator. If the file was an object or load module, the results will be unpredictable.

If a file is extracted with TYPE(*TEXT), the results are unpredictable.

If a file is extracted with type(*BINARY), then the file is extract as is, including the 4
byte length field in front of each record.

Extracting Spool Files
When extracting spool files with PKUNZIP, the attributes at the time of compression,
will be preserved except for new spool file numbers. That will be generated.
Parameter SPLUSRID is for the user ID on the new extracted spool file. If it is *DFT
the original user ID will stay with the new spool file. Parameter SFQUEUE is for the
OUTYQ and OUTQ library that the new extracted spool file will be placed. If *DFT is
specified then the original OUTQ will be used to place the spool file.

Note on extracting Spool Files: To create or extract spool file with PKUNZIP, the
user must have *USE authority to the API QSPCRTSP. The normal setting for the
API QSPCRTSP is Authority PUBLIC(*EXCLUDE). The API authority is set this way
so that system administrators can control the use of this API. This API has
security implications because you can create spooled file from the data of another
spooled file. To allow user to extract spool files change the API authority on a
need basis.

When extracting a spool file with PKUNZIP, the new spooled file will be created with
attributes based on values taken from the spooled file attributes when PKZIP
archived the spool file. The spool file’s file number, job, job user, job number, date,
and time are controlled by IBM OS/400 operating system during the creation of a
spool file.

The new spool file that is created by the PKUNZIP is spooled under one of two jobs
and is dictated by IBM’s create spool file API. The job is determined by the user-
name field from the attributes. If the user name is the current user, it is a part of the
user's job and is owned by the user profile that the job was started with. First the
user profile for the user name must already exist. When using the user id override
(parameter SPLUSRID), the spool file will be now belong to the override user.

If the ownership of the new spooled file is assigned to a different user by a different
user profile name in the user-name field from the attributes, then the current user
must have *SPLCTL authority to assign the spooled file to another user. When this is
done, the new spooled file is by the user specified in the user name field or override
parameter. The new spooled file is then part of a special system job (QPRTJOB) that
is created for each user.

The new spooled file is placed on the output queue specified in the output queue
name field from the original spool file attributes. If the parameter SFQUEUE is used it
will override the attribute for the output queue.

 49

In both cases, the spooled file name is the one contained in the spooled file
attributes parameter. The spooled file number will be the next sequential one
available for the job that the spooled file becomes a part of.

OS/400 authority requirements when extracting spool files:

• Special Authority - *SPLCTL. This authority is needed if you are creating a
spooled file for another user.

• Output Queue Authority -*USE

• Output Queue Library Authority - *EXECUTE

• Object QSPCRTSP API Authority -*USE

The following are several examples of results of extracting spool files:

Start with archiving the following spool files that were created with job MYJOB1 and
user EVWSS:

File File Nbr Job User Number Date Time
QSYSPRT 397 MYJOB1 EVWSS 010893 12/11/02 13:35:29
QSYSPRT 398 MYJOB1 EVWSS 010893 12/11/02 13:36:09
QSYSPRT 399 MYJOB1 EVWSS 010893 12/11/02 13:36:09

Now extract with job MYJOB1 and user EVWSS but now on a different day and job
number:

File File Nbr Job User Number Date Time
QSYSPRT 2 MYJOB1 EVWSS 010927 12/12/02 09:57:42
QSYSPRT 3 MYJOB1 EVWSS 010927 12/12/02 09:57:42
QSYSPRT 4 MYJOB1 EVWSS 010927 12/12/02 09:57:42

Next extract with job MYJOB2 and user EVWSS but now on a different day and job
number:

File File Nbr Job User Number Date Time
QSYSPRT 2 MYJOB2 EVWSS 010928 12/12/02 09:59:06
QSYSPRT 3 MYJOB2 EVWSS 010928 12/12/02 09:59:06
QSYSPRT 4 MYJOB2 EVWSS 010928 12/12/02 09:59:06

Next, using the user, override with the SPLUSRID(WSS) and submit MYJOB1 with
user EVWSS.

File File Nbr Job User Number Date Time
QSYSPRT 26 QPRTJOB WSS 010118 12/12/02 10:02:50
QSYSPRT 27 QPRTJOB WSS 010118 12/12/02 10:02:50
QSYSPRT 28 QPRTJOB WSS 010118 12/12/02 10:02:50

Notice that the job was changed to QPRTJOB since the user being extracted was
different than the user running the Job.

50

Next, signed on as user WSS, submit a job MYJOB11 with the job parameter USER
profile specified for user EVWSS.

 SBMJOB CMD(PKUNZIP ARCHIVE('atest/splftst/tst02')
 TYPE(*EXTRACT)) JOB(MYJOB11) USER(EVWSS)

File File Nbr Job User Number Date Time
QSYSPRT 2 MYJOB11 EVWSS 010936 12/12/02 10:25:25
QSYSPRT 3 MYJOB11 EVWSS 010936 12/12/02 10:25:25
QSYSPRT 4 MYJOB11 EVWSS 010936 12/12/02 10:25:25

 51

5 iSeries File Processing Support

PKZIPi can support files maintained in both the traditional QSYS library file system
and in IFS (integrated file system) along with supporting spool files.

QSYS (Library File System)
The QSYS file system supports the iSeries library structure. This file system provides
access to database files and all other iSeries object types that the library manages.
On the IBM iSeries system, each QSYS type file (also called a file object) has a
description that details the file characteristics and how the data associated with the
file is organized into records, and, in many cases, the fields associated for each
record. Whenever a file is processed, the iSeries uses this description.

Of the objects in the library system, PKZIPi will only process physical files that have
an attribute type of PF-DTA (physical data files), PF-SRC (physical source file), or
SAVF (save files).

QSYS files always exist in a library, and the PF-DTA and PF-SRC files (if data exist)
will always have one to many members in the file. Therefore, PF-DTA and PF-SRC
files have a name format of “library/file(member).” A SAVF (a special type of iSeries
file for saving and restoring iSeries objects) does not have any members giving a file
format of “library/file.” Because SAVF types are handled in a special way, they are
given additional consideration (see SAVF and use of SAVF method).

QSYS Summary
If the archive file is to be in the QSYS library system, set parameter
TYPARCHFL(*DB).

If the file being compressed or extracted is in the QSYS library system, set
parameter TYPFL2ZP(*DB).

If the list files (see Appendix C) are to be in the QSYS library system, set parameter
TYPLISTFL(*DB).

52

Format Summary:

PF-DTA LIBRARY/FILE(MEMBER)

PF-SRC LIBRARY/FILE(MEMBER)

SAVF LIBRARY/FILE

IFS (Integrated File System)
The integrated file system is a part of iSeries which supports stream input/output
and storage management similar to personal computer and UNIX operating systems,
while providing an integrating structure over all information stored in the iSeries.

The key features of the integrated file system are:

• Support for storing information in stream files that can contain long
continuous strings of data. These strings of data might be, for example, the
text of a document or the picture elements in a picture. The stream file
support is designed for efficient use in client/server applications.

• A hierarchical directory structure that allows objects to be organized by
specifying the path through the directories to an object for access to an
object.

• A common view of stream files stored locally on iSeries, Integrated Netfinity
Server for iSeries, or a remote Windows NT server. Stream files can also be
stored remotely on a local Area Network (LAN) server.

Directories and Current Directory
A directory is a special object that is used to locate objects by names specified by
users. Each directory contains a list of objects that are attached to it, and that list
may include other directories.

The current directory is the first directory in which the operating system locates files,
and where it also stores temporary files and output files. When you request an
operation for an object, such as a file, the system searches for the object in the
current directory, unless a different directory path is specified. The current directory
is similar in nature to the current library. If the file selection does not start with ‘/’
(Root Directory), the files should be in the path of the current directory.

Path and Path Names
A path name (also called a pathname on some systems) informs the system how to
locate an object. The path name is expressed as a sequence of directory names
followed by the name of the object. Individual directories and the object name are
separated by a slash (/) character. An example might be: directory1/directory2/file.

For convenience, the back slash (\) can be used instead of the slash in integrated file
system commands.

There are two ways of indicating a path name:

An absolute path name begins at the highest level, or root directory (which is
identified by the / character). For example, consider the following path from the /
directory to the file named testit: /mydept/myfiles/testit.

 53

If the path name does not begin with the / character, the system assumes that the
path begins at your current directory. This type of path name is called a relative path
name. For example, if your current directory is mydept and it has a sub-directory
named myfiles containing the file testit, the relative path name to the file is:
myfiles/testit. Notice that the path name does not include the name of the current
directory. The first item in the name is the directory or object at the next level below
the current directory.

Stream Files
A stream file is a randomly accessible sequence of bytes with no further structure
imposed by the system. The integrated file system provides support for storing and
operating on information in the form of stream files. Documents that are stored in
iSeries folders are stream files. Other examples of stream files are PC files and the
files in UNIX systems. An integrated file system stream file is a system object that
has an object type of *STMF.

Other IFS Objects
There are other object types (such as link objects, etc.) in the IFS which at this time
are not supported by PKZIPi.

File Systems in the IFS
There are currently ten (10) file systems that are part of the integrated file system.
Each file system is a major sub-tree in the IFS directory structure. A file system
provides the support to access specific segments of storage that are organized as
logical units. These logical units on the iSeries are files, directories, libraries, and
objects.

Each of these file systems has a set of logical structures and rules for interacting
with information in storage. These structures and rules may be (and often are)
different from one file system to another. The IFS treats the library support and
folders support as separate file systems.

The ten file systems are:

• “root” - / file system. This file system takes full advantage of stream file
support and hierarchical directory structure of the integrated file system. The
root file system has the characteristics of the Disk Operating System (DOS)
and OS/2 file systems. Most of references throughout this guide refer to the
“root” system.

• QDLS - Document Library Services file system. This file system provides
access to documents and folders. See IBM’s Office Services Concepts and
Programmer’s Guide (SH21-0703) for additional information.

• QOPT - Optical file system. This file system provides access to stream
data that is stored on optical media (such as CDs). See IBM’s Optical Support
(SC41-5310) for additional information.

• QSYS.LIB - Library file system. This file system supports the iSeries
library structure and provides access to database files and all of the other
iSeries object types that the library support manages.

54

• NFS - Network File System. This file system provides the user with access
to data and objects that are stored on a remote NFS server. An NFS server
can export a network file system that NFS clients will then mount
dynamically. See IBM’s OS/400 Network File System Support (SC41-5714) for
additional information.

• QFileSvr.400. This file system provides access to other file systems that
reside on remote iSeries systems. See IBM’s Integrated File System
Introduction (SC41-5711) for additional information.

• QNetWare - QNetWare file system. This file system provides access to
local or remote data and objects that are stored on a server that runs Novell
NetWare 4.10 or 4.11 or to standalone PC servers running Novell Netware
3.12, 4.10, 4.11, or 5.0. A user can mount NetWare file systems over existing
local file systems dynamically. See File Management (SC41-5710) for
additional information.

• QNTC Windows NT Server file system. This file system provides access to
data and objects that are stored on a server running Windows NT 4.0 or
higher. It allows iSeries applications to use the same data as Windows NT
clients. This includes access to the data on a Windows NT Server that is
running on an integrated PC Server. See IBM’s OS/400-iSeries Integration
with Windows NT Server (SC41-5439) for details.

• QOpenSys - Open Systems file system. This file system is compatible
with UNIX-based open system standards, such as POSIX and XPG. Like the
root file system, this file system takes advantage of the stream file and
directory support that is provided by the integrated file system. In addition, it
supports case-sensitive object names. See IBM’s Integrated File System
Introduction (SC41-5711) for additional information.

• UDFS - User-Defined File System. This file system resides on the Auxiliary
storage pool (ASP) of the user’s choice. The user creates and manages this
file system. See IBM’s Integrated File System Introduction (SC41-5711) for
additional information.

PKZIPi works with all file systems, but the rules of each file system must be adhered
to or a file I/O error will most likely occur. In most cases, the files can be
compressed and extracted in one run when all the file names and paths meet the file
system’s rules. When creating an archive file in one file system, one restriction is
that when using the TMPPATH option, the temp path must also be in the same file
system as the archive files.

On the following pages are rules for some of the most used file systems.

Document Library Services File System (QDLS)
The QDLS file system supports the folders structure. It provides access to documents
and folders. Additionally, it supports iSeries folders and document library objects
(DLOs) and supports data stored in stream files.

Considerations and Limitations:

• You must be enrolled in the system distribution directory when working with
objects in QDLS.

 55

• QDLS converts the lowercase English alphabetic characters a through z to
uppercase when used in object names. Therefore, a search for object names
using only those characters is not case sensitive. All other characters are case
sensitive in QDLS.

• Each component of the path name can consist of just a name, such as:
/QDLS/MYFLR1/MYDOC1 - or - a name plus an extension (similar to a DOS
file extension), such as: /QDLS/MYFLR1/MYDOC1.TXT.

• The name in each component can be up to 8 characters long, and the
extension (if any) can be up to 3 characters long. The maximum length of the
path name is 82 characters, assuming an absolute path name that begins
with /QDLS.

• The directory hierarchy within QDLS can be 32 levels deep.

• Must have proper authority within the path.

• The folders in the path must already exist.

• PKZIP will not create folders at this time.

• For more details, see the “Rules for Specifying Folder and Document Names”
discussion in the publication CL Reference.

Optical File System (QOPT)
The QOPT file system provides access to stream data that is stored on optical media
(such as CDs). Additionally, it provides a hierarchical directory structure (similar to
PC operating systems such as DOS and OS/2), is optimized for stream file
input/output, and supports data stored in stream files (known as DSTMF or
Distributed Stream Files).

Considerations and Limitations:

• QOPT converts the lowercase English alphabetic characters a to z to
uppercase when used in object names. Therefore, a search for object names
using only those characters is not case-sensitive. For more details, see the
publication Optical Support.

• The path name must begin with a slash (/) and contain no more than 294
characters. The path is made up of the file system name, the volume name,
the directory and sub-directory names, and the file name. For example:
/QOPT/VOLUMENAME/DIRECTORYNAME/SUBDIRECTORYNAME/FILENAME

• The file system name (/QOPT) is required.

• The volume name is required and can be up to 32 characters long.

• You can include one or more directories or sub-directories in the path name,
but QOPT requires none. The total number of characters in all directory
names and sub-directory names (including the leading slash) cannot exceed
256 characters. Directory and file names allow any character except X'00'
through X'3F', X'FF', lowercase alphabetic characters, and the following
characters:

• Asterisk (*)

• Hyphen (-)

• Question mark (?)

56

• Quotation mark (")

• Greater than (>)

• Less than (<)

• The file name is the last element in the path name. The file name length is
limited by the directory name length in the path. The directory names and file
name combined cannot exceed 256 characters, including the leading slash.

For more details on path name rules in the QOPT file system, see the “Path Name
Rules” discussion in the publication Optical Support.

Using QSYS.LIB via the Integrated File System Interface
Even though PKZIPi accesses the QSYS library file system directly, there is an ability
to access the QSYS.LIB file system through the integrated file system interface. In
using the integrated file system interface, you should be aware of the following
considerations and limitations:

• File handling restrictions in the QSYS.LIB file system are:

• Logical files are not supported.

• Physical files supported for text mode access are program-described physical
files containing a single field and source physical files containing a single text
field. Physical files supported for binary mode access include externally-
described physical files in addition to files supported for text mode access.

• If any job has a database file member open, only one job is given write
access to that file member at any given time. Other requests are allowed
read-only access.

• In general, the QSYS.LIB file system does not distinguish between uppercase
and lowercase in the names of objects. A search for object names achieves
the same result, regardless of whether characters in the names are uppercase
or lowercase. If a name is enclosed in quotation marks, the case of each
character in the name is preserved. A search involving quoted names,
therefore, is sensitive to the case of the characters in the quoted name.

• Each component of the path name must contain the object name followed by
the object type of the object. For example:
/QSYS.LIB/TESTLIB.LIB/MYFILE.FILE/MYFILE.MBR. The object name and
object type are separated by a period (.). Objects in a library can have the
same name if they are different object types, so the object type must be
specified uniquely to identify the object.

• The object name in each component can be up to 10 characters long, and the
object type can be up to 6 characters long.

• The directory hierarchy within QSYS.LIB can either be two or three levels
deep (two or three components in the path name), depending on the type of
object being accessed. If the object is a database file, the hierarchy can
contain three levels (library, file, or member), otherwise, there can be only
two levels (library or object). The combined length of each component name
plus the number of directory levels determine the maximum length of the
path name. If / and QSYS.LIB are included as the first two levels, the
directory hierarchy for QSYS.LIB can be up to five levels deep.

 57

• The characters in names are converted to code when the names are stored.
Quoted names, however, are stored using the code page of the job.

For information about code pages, see the publication National Language Support.

IFS Summary
Only directories and stream files are supported by PKZIPi.

If the archive file is to be in IFS, set parameter TYPARCHFL(*IFS).

If the file being compressed or extracted is in IFS, set parameter TYPFL2ZP(*IFS)

If the files to be selected for compression are to be non-case sensitive set parameter
TYPARCHFL(*IFS2).

If the list files are to be in IFS (see Appendix C), set parameter TYPLISTFL(*IFS).

Format Summary:

Directory Directory1/directory2 will be current
directory

Stream File filename or directory/filename will be current
directory

Full Path /Directory1/Directory2/filename

For more information, see the IBM publication Integrated File System Introduction
(SC41-5711) or visit the IBM web site.

SAVF
SAVF, denoted by the OS/400 system TYPE(*FILE) and ATTR(SAVF), is a special
form of file designed specifically to handle save/restore data in the iSeries system.

Some SAVF special characteristics are:

• The SAVF is always processed as binary with all records being 528 characters
in length.

• Only a save and restore iSeries function can update or change data.

• A SAVF will not be selected if a member name is included in the file
specification.

• A SAVF is a means to compress other iSeries object types (programs,
modules, commands, logical files, triggers, etc.) that are in the iSeries system
by first doing a SAVLIB or SAVOBJ for those objects to a SAVF. Then you can
compress and extract the SAVF.

Compressing a SAVF file
The only difference when compressing a SAVF is not to specify a member (only
library/file). If a member is specified, then no SAVF types will be compressed.

58

Extracting Records into a SAVF file
It is helpful before extracting records from a ZIP archive to be aware of what file
names and file attributes are being stored for the compressed file. VIEWOPT(
*DETAIL) may be used on the archive to verify the information. An attribute is stored
in the archive header that identifies if the file is a SAVF. The PKUNZIP program will
also retain the original attribute from the extended attributes, such as SAVF
description and library description.

A common problem in some iSeries environments is that some users may not have
the authority to the SAVF commands which can result in failures.

Overwriting Current SAVF File
When extracting a compressed file, it may be desirable to overwrite the existing file.
By using the OVERWRITE(*YES) parameter, PKUNZIP will first issue a CLRSAVF
command to clear the save file. This demonstrates why care should be taken when
extracting a SAVF.

Compressing Spool Files

PKZIPi has the ability to select, compress and extract spool files. Not only can a
spool file be compressed, they can be converted to other document formats that will
allow the document file to be distributed and read by other media and software.

All spool files are eligible for compression but only spool file types *SCS, *IPDS are
supported for text document conversion.

By using the PKZIP command and setting parameter TYPFL2ZP(*SPL), other
parameters will be shown to help select the spool files. To assist, a new command
PKZSPOOL is provided to sequenced the selections and to eliminate parameters that
are not valid for the selection of spool files.

Spool file parameters specifies the group of spool files that are to be selected. Eight
positional values can be specified to select the spool files: the spool file name
(SPLFILE), the spool file number (SPLNBR), the user that created the files (SFUSER),
the OUTQ that the file is residing (SFQUEUE), the form type specified (SFFORM), the
user data tag associated with the spool file (SFUSRDTA), the status of the spool file
(SFSTATUS), or the specific job name/user name/job number (SFJOBNAM). Only files
that meet all of the selection values will be selected. A sample of the default
selection parameters is shown in the window below:

Selection sample using the PKZSPOOL command.

 SPLF File Compression 8.2 (PKZSPOOL)

 Type choices, press Enter.

 Archive Zip File name > myar

 Spool File *ALL Spool File Name, *All
 Spool File User *CURRENT User ID, *CURRENT, *ALL
 + for more values
 Output Queue Name *ALL OutQ name, *ALL
 Library Library, *LIBL, *CURLIB

 59

 Print Form Type *ALL Form Type, *STD, *ALL
 Print File User Specified Data *ALL User Data, *all
 Spool Files Status *ALL *ALL, *READY, *HELD...
 + for more values
 Spool File Job Name Job name, blank for all
 User User Id
 Job Number Job Number
 Spooled file number *ALL 1-9999, *ALL, *LAST
 Target File Format *SPLF *SPLF, *TEXT, *PDF, *TEXT1...
 Target File Name *GEN1
 Type of processing *ADD *ADD, *UPDATE, *FRESHEN ..
 Compression Level *SUPERFAST *NO, *FAST, *NORMAL, *MAX...
 File Types *DETECT *DETECT *TEXT *BINARY
 Zip Spool Files *SPL *SPL
 Archive Password

After defining what spool files are to be selected for compression, you will need to
define the file format the spool file should be stored in the archive. At this time,
there three formats: *SPLF (spool file native mode), *TEXT (ASCII text document
with three variations of how a new page is handled) and *PDF (Adobe portable
document format).

For use with *TEXT and *PDF there are three variations of storing the file name in
the archive with the parameter SFTGFILE. SFTGFILE (*GEN1) will generate a very
specific name using most of the spool file name attributes to form the file name so
that it will not be a duplicated. The name will be built as follows:

"Job-Name/User-Name/#Job-Number/Spool-File-Name/Fspool- File-
Number.Suffix"

For example: "MYJOB/BILLS/#152681/INVOICE/F0021.SPLF"

The suffix is dependent on the SFTARGET setting. *SPLF can only be stored
as SFTGFILE (*GEN1).

SFTGFILE (*GEN1P) will generate the same specific name generated by *GEN1
except the ‘/’ for folders will all be replaced by ‘.’ to make the file name one lone
name. For example:

MYJOB.BILLS.#152681.INVOICE.F0021.SPLF

SFTGFILE (*GEN2) uses the spool file name and appends the spool file number
followed by the suffix that is depended on the SFTARGET setting. Caution should be
taken in that a duplicate file name in the archive could be created. An example of
GEN2 is a spool file INVOICE with spool file number of 21 that will be converted to a
text file will generate a file name of INVOICE21.TXT.

In cases where a very specific name is desired for the file in archive name,
SFTGFILE() can be coded with the name. This is designed for selecting only one file
at a time otherwise file names will be duplicated. Alternatively, you could add coding
to the CVTNAME routine and use the CVTFLAG to generate the desired file name.

60

6 iSeries PKWARE Save/Restore
Application Feature (iPSRA)

PKZIPi will not only compress/encrypt iSeries save files, but with the new 8.2
iSeries PKWARE Save/Restore Application (iPSRA) feature, PKZIPi can save
application data directly to a file in an archive. This process produces a result similar
to creating a save file first and then compressing and/or encrypting the save file into
an archive. The iPSRA feature saves time and disk space that would otherwise be
required if the save had to be explicitly created first. The feature can be used to
supplement your existing backup/recovery procedures and systems on the iSeries.

iPSRA provides a method that will assist not only with compressing your save data
but with encrypting the data for offsite storage of critical, sensitive data objects. In
addition, PKZIP/SecureZIP provides the ability to execute many save operations with
one compression run, versus running many individual save commands.

To use this feature, the user must have a working knowledge of the save/restore
commands in their native mode. The same uses and restrictions apply to the
save/restore commands in PKZIPi as to the native commands. The use and format
of the outfiles with any of the save or restore commands are the same as with the
native commands. For information about the native save and restore commands, see
the IBM manuals that describe these commands, or the IBM Web site:

http://publib.boulder.ibm.com/html/as400/infocenter.html

How iSeries Save/Restore Application Works
iPSRA utilizes the proven technology of the current compression and encryption
provided by PKZIP/SecureZIP for iSeries along with the IBM iSeries Save and
Restore systems and APIs.

The use of the iPSRA feature is as easy as entering the SAV, SAVOBJ and/or SAVOBJ
command as one or more of the PKZIP FILES parameters and starting the command
with a ‘–’ or ‘?’. If the FILES parameter starts with a ‘?’, then PKZIP will prompt the
command entered in the FILES parameter before continuing the processing of other
command parameters. The ‘–’ will assume that the full command has been entered
and will only perform a validation of the command. All IBM restrictions and security
requirements apply to the use of the save and restore commands in iPSRA along with
restrictions noted later in this section.

http://publib.boulder.ibm.com/html/as400/infocenter.html

 61

For example, a PKZIP command to save the library MYLIB and some other objects
might look like this:

 PKZIP ARCHIVE(‘/MYpath/myarchive’) FILES(‘-SAVLIB LIB(MYLIB)
 DEV(MYNAME1)’ ‘?SAVOBJ DEV(MYNAME2)’)

The command above creates a saved library file or iPSRA file of the library MYLIB
and compresses it into the archive ‘/MYpath/myarchive’ as a file name
SAVLIB01_MYNAME1. The command also prompts the user for the command
SAVOBJ, where all the objects to be saved should be entered at the prompt. This
command creates an iPSRA file in the archive named SAVOBJ02_MYNAME2.

When PKZIP runs, it spawns a batch immediate program named PKZSAVA that
processes the save command data, causing it to be compressed into the archive
instead of being save directly to disk. PKZSAVA utilizes the IBM API, which is a pre-
started job in the QSYSWRK subsystem. Since the save is taking place in a pre-
started job, the actual spool file will not appear in your PKZIP job or in your
PKZSAVA job if the OUTPUT(*PRINT) is used, but it will show up in the job QPRTJOB.

The restore of the save object with a RSTLIB command works similarly. However,
only one file can be restored at a time to assure proper building of the saved objects.

More examples and some basic benchmarks are given in the following sections.

Save/Restore Command Overview
The save command parameters are passed to the PKZIP processor using the FILES
parameter with a leading ‘-’ or ‘?’ which identifies the character string as a save that
contains the save command parameters or save keys. These parameters are only
completely validated when the PKZIP submits the command for processing. Refer to
the save commands in the Control Language (CL) information for detailed
information about valid parameters when you save objects to save files. The save
command parameters specified must be consistent with the save command type
entered, and command parameters must be separated by at least one blank
character. All command and security requirements for the commands are adhered to
with PKZIP. For example, only a single library name can be used with the LIB
parameter.

Supported Save Command Types

1 Save (SAV) command

2 Save Object (SAVOBJ) command

3 Save Document Library Object (SAVDLO) command

4 Save Library (SAVLIB) command

The figure below shows how the iPSRA process, when activated to save or restore
application data, spawns a job that utilizes the IBM Save and Restore API and
communicates with the PKZIP or PKUNZIP command for the compression and/or
encryption of the data to be placed in the archive.

62

File Name in Archive
The file name used in the archive for saved data is based on the type of save
command and the name that is used in the DEV parameter of the save commands. If
the DEV parameter is *SAVF, then the name comes from the SAVF parameter.

For example:

Command File Name

SAVOBJ DEV(‘MYPAYROLL’) SAVOBJnn_ MYPAYROLL

SAVLIB DEV(*SAVF) SAVF(MYLIB/MYSAVF)

SAV DEV(‘MYSAVFDEVPATH’) SAVnn_ MYSAVFDEVPATH

The nn in the example file names is the sequence number of the command for one
PKZIP run.

Take care to avoid duplicate file names when updating an existing archive with more
save commands. PKZIP removes existing files with the same name as a new save
file.

Note: If an input archive is used, PKZIP checks to see if there are any iPSRA files in
the inputted archive. If so, the largest nn number plus one is used as the starting nn
for the iPSRA files. This helps avoid any accidental loss of iPSRA files in an archive
due to file-name duplication.

Extended Data in Archive
Each save operation creates specific data in the extended data area so that PKUNZIP
will know that the file is the special SAVE type file. The extended data also provides
history information that can be displayed with VIEWOPT(*ALL) to show the original
command, the job when the save data was created, the target release used for the
save, and the spawned job PKZSAVA.

 63

Filename: SAVLIB01_DEDSAV01
Detected File type: SAVE Apps. Data
Created by: PKZIP for iSeries(tm) 8.2
Zip Spec to Extract: 2.0 Or Greater
Compression method: Deflated [Superfast]
Date and Time 2005 Aug 8 14:08:58
Compressed size: 42876 bytes
Uncompressed size: 413808 bytes
32-bit CRC value (hex): 334d1674
Extended attributes: yes, [Length = 134]
File Save Apps Data:<savlib lib(deD) dev(dedsav01) OUTPUT(*OUTFILE)
 OUTFILE(WSS/TEM01)>
 :TGTRLS(*Current) Save Job <019627/EVWSS/PKZSAVA>
File Comment:"none"
-
Found 1 file, 413808 bytes uncompressed, 42876 bytes compressed: 90%
SecureUNZIP extracted 0 files
SecureUNZIP Completed Successfully

 Additional Message Information

 Message ID : AQZ0895
 Date sent : 08/08/05 Time sent : 14:09:20

 Message : File Save Apps Data:<savlib lib(deD) dev(dedsav01)
 OUTPUT(*OUTFILE) OUTFILE(WSS/TEM01)>

 This shows that the file is a Save Application data file type 4 and the
 command that was used to store the save file in the archive. Save Data
 created with PKZIP job 019586/EVWSS/EVWSSL01. Target System was *Current.

Notice that the spawned job (019627/EVWSS/PKZSAVA) was captured as well as the
PKZIP job (019586/EVWSS/EVWSSL01). Information on the spawned job may be
needed to do a DSPLOG command.

The target release (TGTRLS) is also shown to note target setting for the run.

iPSRA Restrictions

PKZIP

• QTEMP cannot be specified for the library name on the OUTFILE or
SAVACTMSGQ parameters.

• Some parameters of the save commands that not used by iPSRA, will be
ignored. For example CLEAR, DTACPK, etc.

• Objects saved by PKZIP can only be restored using the restore from
application with PKUNZIP and can only be restored to a current or a later
release of the operating system from which they were saved.

• The save parameters are only completely validated when PKZIP submits the
save command for processing.

• The target release VxRxMx value prior to V5R1M0 is not valid since this
feature is not supported prior to version 5, release 1, modification level 0 of
PKZIP. The version, release, and modification level, depend on the save
operation being performed. See the valid values for the TGTRLS parameter
table in the Backup and Recovery book for a complete list of valid values.

64

• All compression methods except the Terse compression method are supported
with iPSRA.

• Positional options on the save commands must contain the parameter. For
example, the save library command of “SAVLIB WSS DEV(*SAVF)
SAVF(TESTWSS)” would not work to save the library WSS. The WSS is a
positional parameter, where it is assumed WSS was the LIB option. The
correct way for this to work with iPSRA is with the command, “-SAVLIB
LIB(WSS) DEV(*SAVF) SAVF(TESTWSS)”.

• The save operation must be completely successful. If any object is not saved
for any reason, the PKZIP job assumes a failure. This means you should not
include an object that will not save, as this object will cause a major failure.

PKUNZIP

• QTEMP cannot be specified for the library name on the OUTFILE parameter.

• Only one restore command can processed per run to assure that all objects
are properly restored.

• Some parameters of the restore commands are not used by iPSRA and are
ignored. For example, VOL, SEQNBR, etc.

• The user must have required security for the restore command.

Use of OUTPUT and OUTFILE with the Save Commands
For every save command that is selected, you could have an OUTFILE parameter
where the save command will build a file of the objects that are saved with each
save command. Each time an OUTFILE is specified for a save command, PKZIP
automatically archives the outfile in the same archive as the iPSRA file with the name
specified. This provides a way to get to the contents that are saved in an iPSRA file.
These out files have the format and restrictions defined by IBM for the save
commands. The use of this file is up to each individual customer.

If OUTPUT(*PRINT) or OUTFILE(*PRINT) is used with a save or restore command,
the printout is produced by the IBM API job and not with the PKZIP job nor the
spawned PKZSAVA job. Therefore, it will appear in the special OUTQ job named
QPRTJOB for each user.

How to Use the Save Application Feature
The save option is activated by having the option of the FILES parameter start with a
dash (-) or a question mark (?) followed by a proper save command. The iPSRA
commands do not all need to be the same, and other files can be selected as well
with one pass.

If a command fails the pre-command processor, PKZIP issues the message
AQZ0332, which shows the failed command. The reason for the failure appears in the
job log prior to this message.

If a failure occurs during the processing of the save commands, the reason for the
failure appears in the job log of the spawned job. If any errors occur in the spawned
job, a job log will be force. There is no pre-check processing on security or on the
objects themselves. The save API handles all data verification.

 65

For example, suppose we use the following command to try to save a library (NOLIB)
that does not exist:

 PKZIP ARCHIVE('/yourpath/BILLS/X5TESTL.ZIP') TYPARCHFL(*IFS)
 FILES('-SAVLIB LIB(NOLIB) DEV(TESTSAV01) OUTPUT(*PRINT) ')

The log of the PKZIP output might look like:

Scanning files in *DB for match ...
Found 0 matching files
1 Save Command(s) selected
Command:<SAVLIB LIB(NOLIB) OUTPUT(*PRINT)>
Compressing SAVLIB01_TESTSAV01 in SAVE Apps. Data mode
Save Operation encountered an error. See Job Log of PKZSAVA save job for fur
ther details.
iPSRA Initialization Failure has occurred
iPSRA Failed. Save command not successful.
SecureZIP Copied 1 files from input archive
SecureZIP Compressed 0 files in Archive /yourpath/BILLS/X5TESTL.ZIP
SecureZIP Completed with Errors
Press ENTER to end terminal session.

The Job Log of the PKSAVF output might look like:

CPF3781 Diagnostic 30 08/08/05 14:49:10.428528 QANESERV QSYS
From module : QANESERV
From procedure : QaneSendPgmMsg__FP14qanec_CTLBLK_tPcT2iN24
Statement : 19
To module : QP0ZPCPN
To procedure : InvokeTargetPgm__FP11qp0z_pcp_cb
Statement : 187
Message : Library NOLIB not found.
 Cause : The library specified for the save or restore operation
 does not exist on the system. Recovery . . . : Do one of the following
 and try the request again: If this is a save operation, correct the library
 name on the LIB parameter. If this is a restore operation, correct the
 library name specified on the SAVLIB or RSTLIB parameter, or use the Create
 Library (CRTLIB) command to create the library by specifying LIB(NOLIB). If
 this is a restore operation and VOL(*SAVVOL) was specified, the save library
 must exist in the auxiliary storage pool specified on the RSTASPDEV
 parameter. If RSTASPDEV(*SAVASPDEV) and RSTASP(*SAVASP) are specified along
 with VOL(*SAVVOL), then the save library must exist in the system ASP. To
 restore a library that is new to the system, specify VOL(*MOUNTED) instead
 of VOL(*SAVVOL).

How to Use the Restore Application Feature
To restore an iPSRA file from archive, you need only code your restore command in
the RSTIPSRA parameter. The PKUNZIP parameter RSTIPSRA is defined as a
command entry, which means there are no quotes around the command, and it can
be prompted. The entire restore command is enclosed by parentheses:
RSTIPSRA(command). If the cursor is placed on the RSTIPSRA entry, and it is a
command, the command entered can be prompted at that point with the F4 key.

If there is more than one file in an archive, the FILES parameter must be used to
select the file you want to match up with the RSTIPSRA parameter. PKZIP only
restores one iPSRA file per run.

66

If any object is not restored, the PKUNZIP issues the message AQZ1007 and creates
a job log for the PKZRSTA job that was issued. The log should be reviewed to find
any object that was not restored and the reason for the error.

If a partial restore is performed, then the CRC and/or hash calculation for
authentication does not take place, and the warning message AQZ1000 is displayed.
This might happen if the save operation was a SAVLIB, but the restore operation
restores only a few objects with the RSTOBJ.

Database considerations for save and restore
The following is a list of tips for working with the save and restore functions.

• When you save an object to a save file or using iPSRA, you can prevent the
system from updating the date and time of the save operation by specifying
UPDHST(*NO) on the save command.

• When you restore an object, the system always updates the object
description with the date and time of the restore operation. Display the object
description and other save/restore related information by using the Display
Object Description (DSPOBJD) command with DETAIL(*FULL).

• To display the last save/restore date for a database file, type: DSPFD
FILE(file-name) TYPE(*MBR).

iPSRA Examples

iPSRA Example 1

The following example saves the library DED and prints the output of the save. It
also saves the file object TESTFILE from the library TESTLIB with several options of
the SAVOBJ. These save application files are compressed with a default setting and
will be encrypted using a password.

 PKZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('-SAVLIB LIB(DED) DEV(DEDSAV01) OUTPUT(*PRINT) '
 '-SAVOBJ OBJ(TESTFILE) LIB(TESTLIB) DEV(TESTOBJ11) OBJTYPE(*FILE)
 TGTRLS(V5R1M0) UPDHST(*NO) PRECHK(*YES) OUTPUT(*PRINT) ')
 PASSWORD('bills00000') VPASSWORD('bills00000')

SecureZIP(TM) for iSeries is running under Beta release B0
Machine ID = 01045B5C, Processor Group = P05
Scanning files in *DB for match ...
Found 0 matching files
2 Save Command(s) selected
Command:<SAVLIB LIB(DED) OUTPUT(*PRINT)>
Compressing SAVLIB01_DEDSAV01 in SAVE Apps. Data mode
Add SAVLIB01_DEDSAV01 -- Deflating (90%) encrypt(BSAFE AES 256Key)
Command:<SAVOBJ OBJ(TESTFILE) LIB(TESTLIB) OBJTYPE(*FILE)
UPDHST(*NO) PRECHK(*YES) OUTPUT(*PRINT)>
Compressing SAVOBJ02_TESTOBJ11 in SAVE Apps. Data mode
Add SAVOBJ02_TESTOBJ11 -- Deflating (79%) encrypt(BSAFE AES 256Key)
SecureZIP Compressed 2 files in Archive /yourpath/bills/testsavx1.zip
SecureZIP Completed Successfully

 67

iPSRA Example 2

The contents of the archive displays are:

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 TYPE(*VIEW)

Archive: /yourpath/bills/testsavx1.zip, 1358415 bytes, 2 files, 1 Segment
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 430192 Defl:S 43718 90% 08-09-05 08:16 ac1f8407 !SAVLIB01_DEDSAV01
 6325776 Defl:S 1313814 79% 08-09-05 08:16 101311d4 !SAVOBJ02_TESTOBJ11
 -------- ------- ---- -------
 6755968 1357532 80% 2 files

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 TYPE(*VIEW) VIEWOPT(*ALL)

Archive Comment:"SecureZIP for iSeries"
Filename: SAVLIB01_DEDSAV01
Detected File type: SAVE Apps. Data Encrypt=Strong Encrypted
Created by: PKZIP for iSeries(tm) 8.2
Zip Spec to Extract: 5.1 Or Greater
Compression method: Deflated [Superfast]
Date and Time 2005 Aug 9 08:16:16
Compressed size: 43718 bytes
Uncompressed size: 430192 bytes
32-bit CRC value (hex): ac1f8407
Extended attributes: yes, [Length = 130]
Strong Encryption AES 256 Key (BSAFE).
Algorithm Key 256, Security type Password
Number Certifcate Recipients 0
Recipient List:
File Save Apps Data:<SAVLIB LIB(DED) DEV(DEDSAV01) OUTPUT(*PRINT)>
 :TGTRLS(*Current) Save Job <019700/EVWSS/PKZSAVA>
File Comment:"none"
-
Filename: SAVOBJ02_TESTOBJ11
Detected File type: SAVE Apps. Data Encrypt=Strong Encrypted
Created by: PKZIP for iSeries(tm) 8.2
Zip Spec to Extract: 5.1 Or Greater
Compression method: Deflated [Superfast]
Date and Time 2005 Aug 9 08:16:16
Compressed size: 1313814 bytes
Uncompressed size: 6325776 bytes
32-bit CRC value (hex): 101311d4
Extended attributes: yes, [Length = 217]
Strong Encryption AES 256 Key (BSAFE).
Algorithm Key 256, Security type Password
Number Certifcate Recipients 0
Recipient List:
File Save Apps Data:<SAVOBJ OBJ(TESTFILE) LIB(TESTLIB) DEV(TESTOBJ11) OBJTYPE
(*FILE) TGTRLS(V5R1M0) UPDHST(*NO) PRECHK(*YES) OUTPUT(*PRINT)>

 :TGTRLS(*Current) Save Job <019701/EVWSS/PKZSAVA>
File Comment:"none"
-
Found 2 files, 6755968 bytes uncompressed, 1357532 bytes compressed: 80%

68

iPSRA Example 3

Now we want to restore the saved library DED to a new library called DEDNEW and
then restore the object TESTFILE to the new DEDNEW Library. This requires two
steps, as we can only perform one restore at a time with PKUNZIP.

Step1.

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVLIB01_DEDSAV01') TYPE(*EXTRACT)
 RSTIPSRA(RSTLIB SAVLIB(DED) DEV(RSTDED) output(*print)
 RSTLIB(DEDNEW))
 PASSWORD('bills00000')

UNZIP Archive: /yourpath/bills/testsavx1.zip
Archive Comment:"SecureZIP for iSeries"
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTLIB SAVLIB(DED) RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVLIB01_DEDSAV01
Inflating *iPSRA:SAVLIB01_DEDSAV01 iPSRA File
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

Step 2.

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVOBJ02_TESTOBJ11') TYPE(*EXTRACT)
 RSTIPSRA(RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB) DEV(RSTTEST)
 OBJTYPE(*FILE) RSTLIB(DEDNEW) OUTPUT(*PRINT))
 PASSWORD('bills00000')

UNZIP Archive: /yourpath/bills/testsavx1.zip
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB) OBJTYPE(*FILE)
 RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVOBJ02_TESTOBJ11
Inflating *iPSRA:SAVOBJ02_TESTOBJ11 iPSRA File
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

iPSRA Example 4

The following example show that we can restore one or more objects from a iPSRA
file that was created with SAVLIB.

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVLIB01_DEDSAV01') TYPE(*EXTRACT)
 RSTIPSRA(RSTOBJ OBJ(MYFILE2) SAVLIB(DED) DEV(RST1FILE)
 OBJTYPE(*FILE) RSTLIB(DEDNEW) OUTPUT(*PRINT))
 PASSWORD('bills00000')

 69

UNZIP Archive: /yourpath/bills/testsavx1.zip
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTOBJ OBJ(MYFILE2) SAVLIB(DED) OBJTYPE(*FILE)
RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVLIB01_DEDSAV01
Inflating *iPSRA:SAVLIB01_DEDSAV01 iPSRA File
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

iPSRA Example 5

The following example demonstrates the use of the OUTFILE in a save command and
shows how PKZIP automatically adds the outfile to the archive.

PKZIP ARCHIVE('/yourpath/bills/iPSRA_test/x3.zip') TYPARCHFL(*IFS)
 FILES('-SAVLIB LIB(DED) DEV(DEDSAV01) OUTPUT(*OUTFILE)
OUTFILE(ATEST/DEDSAV01)'
 '-SAV DEV(''IFS_testpkcs7*'') OBJ((''/ajunk/testpkcs7/*''))
 OUTPUT(''/yourpath/bills/iPSRA_test/File01_SAV'') ')

Scanning files in *DB for match ...
Found 2 matching files
2 Save Command(s) selected
Command:<SAVLIB LIB(DED) OUTPUT(*OUTFILE) OUTFILE(ATEST/DEDSAV01)>
Compressing SAVLIB01_DEDSAV01 in SAVE Apps. Data mode
Add SAVLIB01_DEDSAV01 -- Deflating (90%)
Compressing ATEST/DEDSAV01(DEDSAV01) in TEXT mode
Add ATEST/DEDSAV01/DEDSAV01 -- Deflating (98%)
Command:<SAV OBJ(('/AJUNK/TESTPKCS7/*'))
OUTPUT('/yourpath/BILLS/IPSRA_TEST/FILE01_SAV')>
Compressing SAV02_IFS_TESTPKCS7* in SAVE Apps. Data mode
Add SAV02_IFS_TESTPKCS7* -- Deflating (63%)
Compressing /yourpath/BILLS/IPSRA_TEST/FILE01_SAV in BINARY mode
Add /yourpath/BILLS/IPSRA_TEST/FILE01_SAV -- Deflating (61%)
SecureZIP Compressed 4 files in Archive /yourpath/bills/iPSRA_test/x3.zip
SecureZIP Completed Successfully

Notice that there are four files stored in the archive. Two files are the iPSRA files,
and the other two files are the outfiles in the commands.

iPSRA Example 6 showing a restore error

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVLIB01_DEDSAV01') TYPE(*EXTRACT)
 RSTIPSRA(RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB) DEV(RSTTEST)
 OBJTYPE(*FILE) RSTLIB(DEDNEW) OUTPUT(*PRINT))
 PASSWORD('bills00000')

UNZIP Archive: /yourpath/bills/testsavx1.zip
Archive Comment:"SecureZIP for iSeries"
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB) OBJTYPE(*FILE)
RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVLIB01_DEDSAV01
Inflating *iPSRA:SAVLIB01_DEDSAV01 iPSRA File
Restore Operation encountered an error. See Job Log of PKZRSTA restore
job for further details.
SecureUNZIP extracted 0 files
SecureUNZIP found 1 file(s) in Error

70

 Additional Message Information

 Message ID : AQZ1007
 Date sent : 08/09/05 Time sent : 09:54:57

 Message : Restore Operation encountered an error. See Job Log of
 PKZRSTA restore job for further details.

 DSPSPLF FILE(QPJOBLOG) JOB(019721/EVWSS/PKZRSTA) for job log and
 detail on why the restore operation failed. Possible problem may be that
 some or all of the objects may not have been restored due to some restore
 setting.

Since OUTPUT(*PRINT) was in effect you could view the restore output:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....
 5722SS1 V5R3M0 040528 RESTORE OBJECT INFORMATION
 OBJECT NAME : TESTFILE
 SAVE LIBRARY : TESTLIB
 OBJECT TYPE : *FILE
 SAVE FILE NAME . . . : QANE019357
 SAVE FILE LIBRARY . : QTEMP
 LABEL : *SAVLIB
 OPTION : *ALL
 MEMBER OPTION . . . : *MATCH
 SAVE DATE/TIME . . . :
 ALWOBJDIF. : *NONE
 RESTORE LIBRARY . . : DEDNEW
 RESTORE ASP : *SAVASP
Specified file for library TESTLIB not found.
 * * * * * E N D O F L I S T I N G * * * * *

Or from the DSPSPLF FILE(QPJOBLOG) JOB(019721/EVWSS/PKZRSTA) the job log will
show the actual IBM Restore error messages:

CPF3806 Diagnostic 20 08/09/05 09:54:57.125128 QANESERV QSYS
 From module : QANESERV
 From procedure : QaneSendPgmMsg__FP14qanec_CTLBLK_tPcT2iN24
 Statement : 19
 To module : QP0ZPCPN
 To procedure : InvokeTargetPgm__FP11qp0z_pcp_cb
 Statement : 187
 Message : Objects from save file QANE019357 in QTEMP not restored.
 Cause : The library name in the save file does not match the
 library name that you specified in the SAVLIB parameter. Recovery . . . :
 Use the DSPSAVF command to display the save file and to determine the
 library from which the objects were saved. Specify the correct library in
 the SAVLIB parameter and try the command again.

CPF3780 Diagnostic 30 08/09/05 09:54:57.125152 QANESERV QSYS
 From module : QANESERV
 From procedure : QaneSendPgmMsg__FP14qanec_CTLBLK_tPcT2iN24
 Statement : 19
 To module : QP0ZPCPN
 To procedure : InvokeTargetPgm__FP11qp0z_pcp_cb
 Statement : 187
 Message : Specified file for library TESTLIB not found.
 Cause : The data in the save file or on the tape, diskette or
 optical volume did not match the specified parameters. Recovery . . . :
 See the previously listed messages. If the restore operation is from
 diskette, tape or optical, display the contents of the volume using the
 appropriate display command specifying the DATA(*SAVRST) parameter. If the
 restore operation uses a save file, display the contents of the save file
 (DSPSAVF command). Correct any errors and then try the request again.

 71

iPSRA Example 9

Below is an example that shows how the save information is depicted for an object
that was saved with PKZIP iPSRA and UPDHST(*YES) for save command. Notice that
the save file shows the save library of QTEMP and shows the save file as
QANExxxxxx. This is an internal representation of the save API process. The device
type will show as a save file.

 DSPOBJD OBJ(DED) OBJTYPE(*LIB) DETAIL(*FULL)

 Display Object Description - Full
 Library 1 of 1
 Object : DED Attribute : TEST
 Library : QSYS Owner : WSS
 Library ASP device . : *SYSBAS Primary group . . . : *NONE
 Type : *LIB

 Save/Restore information:
 Save date/time : 08/10/05 11:16:41
 Restore date/time : 08/10/05 09:31:26
 Save command : SAVLIB
 Device type : Save file
 Save file : QTEMP/QANE020372

72

7 PKZIP Command

PKZIP Command Summary with Parameter Keyword Format
If the OS/400 command prompt screen is to be used, the command format is simply:
PKZIP. There also is a command PKZSPOOL which is the same command as PKZIP,
but has the parameter TYPFL2ZP set to *SPL for spool files. The parameters are also
re-sequenced to give preference to parameters dealing specifically with spool files.

The command prompt screen is displayed when Enter or PF4 is pressed. The
parameter keywords are displayed on this screen, together with the available
keyword options. The required options can be selected before PF4 is pressed to
accept the selections. If the command and parameter keywords are entered together
on the command line the required format is:

PKZIP keyword1(option) keyword2(option) . . . keywordn(option)

Keywords are demarcated by spaces. The keyword “ARCHIVE” is the only positional
keyword where the keyword is not required. Whenever the word “path” is used, its
meaning depends on the file system that is being used. If IFS is used, path refers to
the open system true path type. If the library systems or *DB is used, path means
library/file and then the file name refers to the member name.

TYPE(*ADD)
{*UPDATE}
{*FRESHEN}
{*MOVEA}
{*MOVEF}
{*MOVEU}
{*DELETE}

ADVCRYPT({ZIPSTD})
{AES128} (SecureZIP Only)
{AES192} (SecureZIP Only)
{AES256} (SecureZIP Only)
{3DES} (SecureZIP Only)
{DES} (SecureZIP Only)
{RC4_128} (SecureZIP Only)

ARCHIVE(Archive Zip File name with path)
 Archive to create { archive file name with path }
 Optional Input Archive File { archive file name with path }

 73

 Output Archive File Disposition {*DEFAULT}
 {*PROTECT}
 {*OVERWRITE}

ARCHTEXT({*NONE})
Archive File Text description

AUTHCHK(Authenticators) (SecureZIP Only)
 Authenticate Type {*FILE}

 {*ARCHIVE}
 {*ALL}

 Lookup Type {*DB }
 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}
 {*SPONSOR} (SecureLink Only)

 Recipient {Recipient String}
 Password (if Private) {Certificate password}
 Required {*RQD }

 {*OPT}

AUTHPOL (Authenticate Filters:) (SecureZIP Only)
Validate Level { *SYSTEM }
 {*WARN }
 {*VALIDATE}
 {*REQUIRED}
Validate Level { *NONE }
 {*ARCHIVE }
Filters {*SYSTEM }
 {*ALL}
 {*NONE}
 {*TAMPER}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTAMPER}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

COMPAT({*NONE})

{*PK400}

COMPRESS(Compression options)
 Level {*SUPERFAST}

{*FAST}
{*NORMAL}
{*MAX}
{*STORE}
{*TERSE)
{E1 thru E9}

 Method {*DEFLATE32}
{*DEFLATE64}
{*STORE}
{*TERSE)

CRTLIST({*NONE})
path/filename
{*SIMULATE}

CVTDATA(External Pgm Conversion Extended Data)

CVTFLAG({*NONE})
External Pgm Conversion Flags

74

CVTTYPE({*NONE})
{*DROP}
{*SUFFIX}

DATEAB(mmddyyyy)

DATETYPE({*NO})
{*BEFORE}
{*AFTER}

DBSERVICE(({*NO})
{*YES)

DELIM (({CRLF})
{CR }
{LF }
{LFCR }

DFTARCHREC({132})
{decimal number}

DIRNAMES({*YES})
{*NO}

DIRRECRS({*NONE})
{*FULL}
{*NAMEONLY}

ENTPREC(Lookup Type; Recipient; Password; Required) (SecureZIP Only)
 Lookup Type {*DB }

 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}
 {*SPONSOR} (SecureLink Only)

 Recipient {Recipient String}
 Password (if Private) {Certificate password}
 Required {*RQD }

 {*OPT}
ENCRYPOL (Encryption Filters:) (SecureZIP Only)
 Validate Level {*SYSTEM }
 {*WARN }
 {*VALIDATE}
 Filters {*SYSTEM }
 {*ALL}
 {*NONE}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

EXCLFILE({*NONE})
path/filename

EXCLUDE(file_specification 1,)
file_specification 2,
file_specification n

EXTRAFLD({*YES})
{*NO}
{*CENTRAL}
{*LOCAL}
{*BOTH same as *YES}

 75

ERROPT({*END})
{*SKIP}

FILES(file_specification 1,)
file_specification 2,
file_specification n

 OR *COPY
FILESTEXT({*NO})

{*ALL}
{*NEW}
{*UPDATE}

FILETYPE({*TEXT})
{*BINARY}
{*EBCDIC}
{*FIXTEXT}
{*DETECT}

FNE({Create FNE | Overwrite FNE}) (SecureZIP Only)
{*YES | *NO}

FTRAN({*ISO88591})
{*INTERNAL}
 Member Name

GZIP({*YES})
{*NO}

IFSCDEPAGE({*NO})
Code-page

INCLFILE({*NONE})
path/filename

MSGTYPE({*PRINT})
{*SEND
{*BOTH}

PASSWORD(Archive Password)

SELFXTRACT ({*MAINTAIN})
{*REMOVE}
{WINDOWS}
{AIX}
{HP_UNIX}
{SUN_UNIX}
{LINUXINTEL}

SFUSER ({*CURRENT})
{user id 1}
{user id 2}
{user id 5)

SFQUEUE ({*ALL})
{Library/OUTQ }

SFFORM ({*ALL})
{*STD}
{Spool File Form Type }

SFUSRDTA ({*ALL})
{Spool File User data}

SFSTATUS ({*ALL})
{*READY}
(*HELD }

76

{*CLOSED}
{*SAVED }
{*PENDING}
{*DEFERRED}

SFJOBNAM ({blanks })
{*}
{Job-name//Userr-Name/Job Number}

SFTARGET ({*SPLF})
{*TEXT}
{*TEXT1}
{*TEXT2}
{*TEXTFC}
{*PDF}
{*PDFLETTER}
{*PDFLEGAL}

SFTGFILE ({*GEN1})
{*GEN2}
{*GEN1P}
{path/filename }

SIGNERS(Signer) (SecureZIP Only)
 Signing Type {*FILE}

 {*ARCHIVE}
 {*ALL}

 Lookup Type {*DB }
 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}

 Recipient {Recipient String}
 Password (if Private) {Certificate password}
 Required {*RQD }

 {*OPT}

SIGNPOL (Signing Filters:) (SecureZIP Only)
 Validate Level {*SYSTEM }
 {*WARN }
 {*VALIDATE}
 Filters {*SYSTEM }
 {*ALL}
 {*NONE}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

STOREPATH({*NO})
{*YES}

SPLFILE ({*ALL})
{Spool File Name }

SPLNBR ({*ALL})
{*LAST}
{Spool File Number 1-9999}

STOREPATH({*NO})
{*YES}

TMPPATH({*CURRENT})
Temporary Path

 77

TRAN({*ISO88591})
{*INTERNAL}
 Member Name

TYPARCHFL(Archive Type File)
 Type {*DB}

{*IFS}
 Check ZIP64 {*NONE}

{*WARN}
{*FAIL}

TYPFL2ZP({*DB})
{*IFS}
{*IFS2}
{*DBA}
{*SPL}

TYPLISTFL({*DB})
{*IFS}

VERBOSE({*NORMAL})
{*NONE}
{*ALL}
{*MAX}

VPASSWORD(Archive Verify Password)

78

PKZIP Command Keyword Details

TYPE

TYPE(ADD|DELETE|EXTRACT|FRESHEN|MOVEA|MOVEF|MOVEU|UPDATE |VIEW)

The TYPE keyword specifies the type of action PKZIP should perform on the ZIP
archive.

The possible actions are:

*ADD The *ADD option is the default and adds a selection of
files to the archive file. If an archive is already present,
it will be written over by the new archive file.

*UPDATE The *UPDATE option updates files which are already in
the archive file with a newer version and will also add
newly selected files that are not present in the archive
file.

*FRESHEN The *FRESHEN option updates ONLY the files which
already exist in an archive file. If the date/time of the
file is newer than the date/time of the file in the archive,
the file will be compressed and replace the one in the
archive.

*MOVEA The *MOVEA (Move and Add option) option performs the
*ADD option, and upon completion of a successful PKZIP
command, the actual file will be deleted.

*MOVEF The *MOVEF (Move and Freshen option) option performs
the *FRESHEN option, and upon completion of a
successful PKZIP command, the actual file will be
deleted.

*MOVEU The *MOVEU (Move and Update option) option performs
the *UPDATE option, and upon completion of a
successful PKZIP command, the actual file will be
deleted.

*DELETE The *DELETE option removes entries from the archive
file based upon the selection of FILES and EXCLUDE
parameters. The format of the FILES and EXCLUDE
parameters should be in the format of the files as seen
in the archive.

ADVCRYPT

ADVCRYPT(ZIPSTD|ASE128|AES192|AES256|DES|3DES|RC4_128 PKWARE|BSAFE)

Note: PKZIP for iSeries only support *NONE and ZIPSTD options.

 79

When a ZIP action is requested to save a file in an archive, and a password is
provided, SecureZIP for iSeries will use an encryption method to protect the data.

This command value specifies which algorithm to employ.

Possible encryptions are:

ZIPSTD This algorithm is the original algorithm used in PKZIP
2.x products and is compatible with other PKZIP 2.04g
products that support standard encryption. Unless the
installation defaults module has been tailored differently,
this is the default value for PKZIP for iSeries if you
choose to encrypt a file.

*NONE No Encryption

AES128 Advanced Encryption Standard 128-bit key algorithm,
also known as Rijndael.

AES192 Advanced Encryption Standard 192-bit key algorithm,
also known as Rijndael.

AES256 Advanced Encryption Standard 256-bit key algorithm,
also known as Rijndael. This is the default value for
SecureZIP for iSeries.

DES Data Encryption Standard.

3DES Triple Data Encryption Standard.

RC4_128 RC4 is a stream cipher created by RSA.

Usage Notes:

PKUNZIP will detect automatically which encryption method was specified during the
ZIP process and operate accordingly.

During a PKZIP (ZIP) run, only one encryption method may be specified, and that
method will be used for each file that is operated on.

By executing PKZIP at different times, various files within the archive may be saved
with differing levels (and types) of encryption. That is, some files may not be
protected at all, while others may have different methods and/or passwords.

A “+” character is shown in a view to indicate standard encryption protection is used
for a file.

A “!” character is shown in a View to indicate advanced encryption (AES) protection
is used for a file.

80

ARCHIVE

ARCHIVE(archive name, (option)input archive name, out archive Disp)

Archive Zip File:
 Archive Name _

 (Optional) Input *NONE _

 Output Archive Disp. . . *DEFAULT *PROTECT, *OVERWRITE...

Or

ARCHIVE (‘/yourpath/mypath/myarch.zip’)
ARCHIVE (‘/yourpath/mypath/myarch.zip’ *NONE *OVERWRITE)
ARCHIVE ‘/yourpath/mypath/myarch.zip’ ‘/yourpath/mypath/oldarch.zip’)
ARCHIVE (‘MYLIB/MYARCH/NEWZIP1’ ‘MYLIB/MYARCH/OLDZIP0’ *PROTECT)

This parameter specifies the archive files for output and/or input. Currently there
are 3 entries for the ARCHIVE parameter (Archive File to create, Optional Input
Archive file, and output file disposition).

Archive to create (archive file name with path)

Specifies the path/file name or the library/file name of the PKZIPi archive to be
processed. If the file exists, PKZIP will overwrite the file, otherwise PKZIP will create
the file for you. Depending on which file system you choose, the path or library must
exist. This is a required parameter.

Optional Input Archive File (archive file name with path)

Specifies the path/file name or the library/file name of an archive the will be used as
input. This parameters provides the ability to have an input archive to update but
this archive is preserved and not updated. The files in the archive will be copied to
the new updated archive along with any new file selections. If an existing archive is
to be updated with the same archive name then using the “archive to create”
parameter is only required.

Output Archive File Disposition (*DEFAULT| *PROTECT|*OVERWRITE)

Specifies the output archive’s disposition if it exist.

*DEFAULT This option provides backward compatibility to version
prior to 8.2. If no input archive is provided, this option
is set to *OVERWRITE. If an Inputted archive is
provided then this option will be set to *PROTECT.

*PROTECT If the output archive file exist, do not overwrite the
archive and fail the run.

 81

*OVERWRITE If the output archive exist, then overwrite the archive
with the new or updated archive.

NOTE: archive file name with path:

The format of “archive file name with path” depends on whether you will be using
the archive file in the library file system, or the IFS (Integrated File System).

See parameter TYPARCHFL for file system type information.

Library File System
Format is library/file(member). If member is omitted, it
will be created with the file name. If the file is not
found, it will be created with a default length specified in
parameter DFTARCHREC (which has a default of 132).
If you want to create a file manually to use a larger
record length, create it with no members and with the
parameter MAXMBRS with *NOMAX, or with a high
excepted limit. If the Library is not specified, the file
name will be searched using *LIBL. If the file name is
not found, the file will be created in the users *CURLIB.
If a library is specified and does not exist, PKZIP will
create the library.

Integrated File System (IFS)
Open system path followed by the archive file name.
The path and file name can up to 256 characters and
may contain embedded spaces.

ARCHTEXT

ARCHTEXT(*NONE| Archive File Text description)

Specifies text that will be stored in the archive as the archive's file comment.

*NONE No new archive comment will be stored.

*DEFAULT The default PKWARE comment will be stored.

*CLEAR Clear any comment that may be stored in an archive.

Archive File Text description
Up to 255 characters that are stored as the archive's file
comments.

82

AUTHCHK

Requires SecureZIP

Authenticator Certificates:
 File/Archive * ARCHIVE *ARCHIVE
 LookUp Type *DB *DB, *LDAP, *FILE, *MBRSET...
 Authenticator ______________________________
 Password (If Private) . . . ______________________________
 Required *RQD *RQD, *OPT
 + for more values _

Or

AUTHCHK((*ARCHIVE *MBRSET
 'pkwareCertAdmin04.pfx' (password) *RQD))
AUTHCHK((*ARCHIVE *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))
AUTHCHK((*ARCHIVE *DB
 ‘EM=bill.somebody@pkware.com' () *OPT))
AUTHCHK((*ARCHIVE *INLIST 'ATEST/INLIST(ENGNEER1)' *N)

This parameter specifies that digital signature authentication processing should be
performed for specific signers. Separate authentication processing may be specified
for either the archive central directory or files by using multiple commands.
Optionally, specific signers may be specified to authenticate against. This parameter
is used in conjunction with the AUTHPOL parameters and its settings.

It is possible that more than one certificate may be returned for a single common
name or email search. As a result, each one will be added to the list of validating
sources.

When no specific certificates are requested, any signatories found in the archive are
validated in accordance with the systems or current AUTHPOL Filters policy settings.

There are five options for AUTHCHK.

Authenticator Type File/Archive (*ARCHIVE)

Indicates the type of archive authentication to do. If the lookup type is *INLIST, then
this option will be ignored and will pickup from the records in the inlist file.

• *ARCHIVE - The archive directory will be authenticated with this
authenticator.

Lookup Type (*DB |*FILE |*LDAP |*MBRSET |*INLIST |*SPONSOR)

The lookup type would be the type of authenticator search to be used for the
authenticator string to look up the public key.

• *DB - The authenticator string is defined to search using the certificate
locator database to access the digital certificate.

• *FILE - The authenticator string is defined to read a specific file in a specific
path in the IFS in order to access the digital certificate.

 83

• *LDAP - The recipient string is defined to search using the LDAP server to
access the digital certificate.

• *MBRSET - The authenticator string is defined to read this specific file from
the enterprise public certificate store to access the digital certificate.

• *INLIST- The authenticator string defines a specific file that will contain one
to many AUTHCHK. The TYPLISTFL parameter must specify the file type for
the inlist.

• If lookup type is *SPONSOR, the authenticator string is Sponsor Auth file
stored in the ‘…/Sponsor/Auth’ folder. If the authenticator string is all
numeric, the name will automatically be formatted as A0000000.p7, assuming
that the number is the sponsor ID number. (SecureLink Only)

Authenticator (The authenticator string name)

The authenticator string format depends on what was specified for the lookup type.

• If lookup type is *DB, the authenticator string will either be an email address
or the common name of the certificate. This depends on the configuration
setting in PKCFGSEC parameter CERTDB. To override the default selection
mode, you can prefix the string with EM= for email, or CN= for the common
name.

For example:

AUTHCHK((*ARCHIVE *DB ‘CN=bill somebody' () *RQD))

• If lookup type is *FILE, the authenticator string is defined to read a specific
file in a specific path of the IFS. This file should be a public key X.509 file or
public key X.509 certificate with a private key file.

For example:

AUTHCHK((*ARCHIVE *FILE
'/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
'/yourpath/PKWARE/Cstores/public’.

• If type is *LDAP, the authenticator string will either be an email address or
the common name of the certificate depending on the search mode
configuration setting in PKCFGSEC parameter LDAP. To override the default
selection mode, you can prefix the string with EM= for email address, or CN=
for the common name.

For example:

AUTHCHK ((*ARCHIVE *LDAP ‘bill.somebody@pkware.com' () *RQD)
 (*ARCHIVE *LDAP ‘CN=bill somebody' () *OPT))

• If lookup type is *MBRSET, the authenticator string is defined to read a
specific file from the public certificate store and/or the private certificate store
of the IFS. This file should be a public key X.509 file or public key X.509
certificate with a private key file.

For example:

AUTHCHK((*ARCHIVE *MBRSET 'pkwareCertAdmin04.cer' () *RQD))

84

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path of
the public certificate store defined in the enterprise security configuration
public store (parameter CSPUB). If a password is included, the file is searched
for in the enterprise security configuration private store (parameter CSPRIV).

• If lookup type is *INLIST, the authenticator string defines a full file name of
an input list file that contains records of AUTHCHK shortcut parameters. The
type of file will exist in the QSYS library file system if TYPLISTFL(*DB) is set
and will be a path file name in the IFS if TYPLISTFL(*IFS) is set. The format
of the AUTHCHK shortcut parameters are defined below in the *INLIST usage
section.

Password

This designates the password that is required for a private key certificate with a
private key (PKCS#12 file). When a value is specified, the target must be an X.509
PKCS#12 public key certificate with the private key.

The PASSWORD value may contain blanks and is delimited by the closing right
parenthesis ")" of the signing command.

Required (*RQD|*OPT|*SAME)

If *RQD, then this authenticator must be found during the selection, and the
certificate must be a valid certificate with a private key, or the ZIP/UNZIP run will
fail.

Usage Notes:

Passwords are masked out in all output displays.

A local certificate store configuration is required to complete the TRUST processing of
this command.

Processing is terminated if none of the requested certificates can be accessed,
regardless of the “R” required flag. If multiple requests are made and at least one
signature is found, processing continues normally.

For inlist that contains a password to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.
Otherwise this would leave a security hole where other users could browse the
password.

*INLIST Usage:

If *INLIST is defined on the AUTHCHK parameter, then the authenticator filed will be
a file that SecureZIP will read to include the authenticator. The format is very similar
to the AUTHCHK parameter described above except that each line authenticator
starts with “{AUTHCHK=” and is terminated by the “}” character, with the semi-
colon “;” as a separator for each entry.

{AUTHCHK=Authenticator Type, Lookup Type; Authenticator; Password; Required}

Authenticator Type See Authenticator Type in AUTHCHK

Lookup Type See Lookup Type in AUTHCHK excluding the INLIST

Authenticator See Authenticator in AUTHCHK.

 85

Password See Password in AUTHCHK.

Required See Required in AUTHCHK, but use RDQ for *RQD and OPT for
*OPT.

Examples:

Sample 1: tstauth_db1.inlist.
{AUTHCHK=ARCHIVE;DB;EM=PKTESTDB4@nowhere.com;;RQD}

Sample 2: tstauth_mb2.inlist.
{AUTHCHK=ARCHIVE;MBRSET;pktestdb3.pfx;PKWARE;RQD}

AUTHPOL

Requires SecureZIP

Authenticate Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...
 Validate Type *ARCHIVE *ARCHIVE, *NONE
 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values

Or

AUTHPOL(*WARN *ARCHIVE (*SYSTEM))
AUTHPOL(*WARN *FILE (*NOTTRUSTED))
AUTHPOL(*SYSTEM *ALL (*ALL *NOTEXPIRED))

This parameter defines the processing options and filters that should apply if a
signed file or signed archive is encountered.

Validate Level (*VALIDATE |*WARN |*REQUIRED |*SYSTEM)

The validate level specifies the type of authentication processing that should take
place if a signed archive is encountered. The default is *SYSTEM and, unless it is
modified, SecureZIP will use the enterprise setting from PKCFSEC.

• *VALIDATE – Indicates that when authentication takes place and a failure
occurs based on the filters, the run will be considered a failure and the
message issued when the job terminates will indicate one or more errors
during the run.

• *WARN - Indicates that when authentication takes place and a failure occurs,
the failure is only to be considered a warning. The messages at the end of the
run will not consider any failed authentications as errors.

• *REQUIRED – Indicates that authentication must take place and that, if any
failure occurs based on the filters, the run will be considered a failure, and the
message issued when the job terminates will indicate one or more errors

86

occurred during the run. If the archive has not been signed, then an error will
be issued.

• *SYSTEM – Indicates the authentication processing that is set in the
environmental setting will be used.

Validate Type (*ARCHIVE |*NONE)

The validate type specifies that archive authentication should take place if an archive
has been signed. The default is *NONE and anything other than *NONE requires the
Enhanced Encryption Feature..

• *ARCHIVE - Indicates that only a signed archive will be authenticated.

• *NONE - Indicates no authentication will take place even though a file or
archive has been signed.

Filters (*SYSTEM |*ALL |*NONE |*TAMPER |*TRUSTED |*EXPIRED |*REVOKED
|*NOTAMPER |*NOTTRUSTED |*NOTEXPIRED |*NOTREVOKED)

The authentication filter policies settings are defined in the enterprise security file
supplied by the SecureZIP administrator (See PKCFGSEC). These global policy
settings can be revised with sub-parameter values. The variables are cumulative
from the global setting.

• *SYSTEM – All filter policies are from the global settings.

• *ALL - This sub-parameter activates all levels of authentication. If followed
by negating sub-levels, then all but those negating levels are activated. For
example: *ALL NOTEXPIRED means that expired certificates will not cause an
authentication error, but TRUST and TAMPERCHECK must both be satisfied.

• *NONE – Will negate all the policies.

• *TAMPER – This sub-parameter signifies that a verification of the data
stream should be done against the digital signature.

• *TRUSTED – This sub-parameter signifies that the entire certificate authority
chain must be validated. This includes locating the root (self-signed)
certificate on the local system.

• *EXPIRED – This sub-parameter signifies that certificate date range
validation should be performed on the certificates (including the certificate
authority chain). Although the term “expired” is used, a certificate that has
not yet reached its valid data range specification will fail.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer consider
that certificate to be valid. The authentication operation will fail if any of the
certificates in the trust chain are found to have been revoked, or if the
revocation status could not be determined

• *NOTAMPER – Negates the *TAMPER filter.

• *NOTTRUSTED – Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED – Negates the *REVOKED filter.

 87

COMPAT

COMPAT(*NONE|*PK400)

Specifies that PKZIP will create and store extended data field information in another
supported format or previous version. At this time, only “PKZIP Version 4.0 for
OS/400” is supported.

The allowable values are:

*NONE The extended data fields will be in PKZIPi versions 5.0
and above formats.

*PK400 The extended data fields will output to the archive in the
format used by “PKZIP Version 4.0 for OS/400” product.
This option should be used if the archive file will be
extracted by “PKZIP Version 4.0 for OS/400” and the
attributes are required to create the files. The files can
be extracted without this option, but the files may have
to be manually created in order to have the proper
attributes (such as record length and text descriptions).

COMPRESS

Compression:
 Level *SUPERFAST *SUPERFAST, *FAST, *NORMAL...
 Method *DEFLATE32 *DEFLATE32, *DEFLATE64...

Or

COMPRESS(*FAST *DEFLATE64)
COMPRESS(E1 *DEFLATE32)
COMPRESS(*STORE)

This parameter specifies the speed and compression level when zipping a file.
Currently there are 2 entries for the COMPRESS parameter (Level and Method).

Compression Level (*SUPERFAST| *FAST| *NORMAL|*MAX|*STORE|*TERSE |E0 thru E9)

The compression level option specifies a compression level and speed to be used.
The option works in conjunction with the compression method option and specifies a
depth of compression using a sliding scale of values.

The allowable values are:

*FAST Fast selection provides ample compression at a fast rate.
Same as E2.

*SUPERFAST This is the default selection. This will compress in the
fastest time, but will compress the files by the least
amount. Same as E1.

88

*MAX This level provides the maximum compression possible,
but will also take the longest in time to process. Same
as E4.

*NORMAL The normal compression level provides good
compression amount at a reasonable speed. Same as
E3.

*STORE No compression. Store will also be used if the other
methods tried result in a file larger than the original.
Same as E0.

*TERSE This selection provides a terse compression algorithm
provided with the iSeries by IBM as an API. This is
much faster but is less efficient than FASTEST, and can
only be decompressed on the iSeries. Do not use this
option if you wish to unzip the archive on another
platform.

*E0 thru E9 E0 thru E9 are custom levels that can be used to try and
obtain the results based on your input files and desired
time and compression results.

The following table shows the balance of degree of compression and speed of
compression. The levels range from 0 (fastest speed with no compression) to 9
(highest level of compression, usually taking the longest amount of time and using
the most processor time).

Synonym Level Usage

STORE, E0 0 No compression is performed.

SUPERFAST, E1 1 Compression Method: Deflate32 or Deflate64

FAST, E2 2 Compression Method: Deflate32 or Deflate64

NORMAL, E3 3 Compression Method: Deflate32 or Deflate64

MAXIMUM, E4 4 Compression Method: Deflate32 or Deflate64

E5 5 Compression Method: Deflate32 or Deflate64

E6 6 Compression Method: Deflate32 or Deflate64

E7 7 Compression Method: Deflate32 or Deflate64

E8 8 Compression Method: Deflate32 or Deflate64

E9 9 Compression Method: Deflate32 or Deflate64

Usage Notes:

• Compression levels 1 through 9 all work with Deflate32 and Deflate64
compression methods.

• “Maximum” is retained at level 4 to provide equivalent compression ratios
with earlier releases. Higher levels may yield better compression ratios than
previously obtained with “Maximum”.

• Compression results are data-stream dependent and produce non-linear
results. When configuring a job for high volume processing, benchmarking

 89

results with sample file may be of value to find the best balance between
compression ratio and resources (elapsed and processor time).

• In many cases, levels 8 and 9 do not produce significant compression results
over level 7.

• When compression level is STORE, or E0, the compression method will be set
automatically to store.

• When migrating from earlier releases of PKZIPi, a difference in compression
ratio/processor time can be expected for a given data stream and setting.
Although internal settings have been tuned to produce similar results across
the scale of levels, a specific level setting may not produce faster speeds or
better compression for a data stream. If these criteria are of importance,
then benchmarking should be performed to achieve the “best” fit results with
the new algorithms.

Method (*DEFATE32 |*DEFLATE64 |*STORE |*TERSE)

This option specifies the algorithm to be used when compressing a file during ZIP
processing. The method works in conjunction with the compression level option to
specify a depth of compression.

STORE performs no compression of the data. Deflate64 (using the same level
control) will usually produce better compression with less processor time than
Deflate32.

The allowable values are:

*DEFLATE32 Use the Deflate 32 algorithm.

*DEFLATE64 Use the Deflate 64 algorithm.

*STORE Store Data with no compression.

*TERSE Use the IBM Terse algorithm.

Usage Notes:

• When compression method is store is specified, the compression level will be
set automatically to *STORE.

• The GZIP specification only supports Deflate32. When GZIP(*YES) is
encountered, PKZIP will automatically switch from Deflate64 or STORE to
Deflate32.

• Not all non-PKWARE “ZIP compatible” products in the market support the
more advanced Deflate64 algorithm. If the intended target systems support
Deflate64, then it may be chosen for the best compression/speed
performance.

90

CRTLIST

CRTLIST(*NONE| path/filename | *SIMULATE)

Specifies that PKZIP will create an output file with a list of entries that would have
been compressed based upon the selection criteria in the FILES and EXCLUDE
parameters.

See parameter TYPLISTFL for file system type.

*NONE Default. No list file will be created.

path/filename
Enter the file path and name of the file to create. The
layout depends on which file system you want to create
the file in.

Library File System: The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

*SIMULATE Will simulate the file selection and show the selection as
a printed or message list instead of writing to a list file.

CVTDATA

CVTDATA(External Program Conversion Extended Data)

Specifies the extended data that is passed to the external program CVTNAME. When
CVTFLAG is not *NONE, the contents of the parameter are passed to provide
extended flexibility in controlling how the iSeries names are stored in the archive.
The System Administrator’s Guide contains more information on CVTNAME.

External Program Conversion Extended Data
Specify up to 255 bytes of unedited data which is passed
to the exit program CVTNAME to assist in controlling the
program logic.

CVTFLAG

CVTFLAG(*NONE| Conversion Flags)

Specifies the flags passed to the external program CVTNAME. These are used to
control how the iSeries names are stored in the archive. The System Administrator’s
Guide contains more information on CVTNAME.

*NONE Conversion exit is not active.

Conversion Flags Specify a five-byte flag that is passed to the exit
program CVTNAME to control the program logic. If the
name passed back is blank, then conversion is referred
back to the setting of the CVTTYPE parameter.

 91

CVTTYPE

CVTTYPE(*NONE|*DROP|*SUFFIX)

Specifies how the iSeries library and file names are stored in the archive. Since the
length of the library name, file name, and member name can each be up to 10
characters, and MS/DOS format requires a maximum of 8 characters with an optional
extension, this option allows name compatibility.

The allowable values are:

*SUFFIX This forces any iSeries name with more than 8
characters to create a name of 8 characters and a
period(.), followed by characters 9 and 10 to be
considered an extension to suffix.

*NONE This leaves the iSeries name as the archive name.

*DROP This forces any iSeries name with more than 8
characters, to drop characters 9 thru 19.

DATEAB

DATEAB(mmddyyyy)

Used with DATETYPE parameter, DATEAB specifies the date to be used to compare
with the files latest modification date for file selection. The format is mmddyyyy,
where “mm” is a valid month (01-12), “dd” is valid day of the month, and “yyyy” is
the four digits of the year (2001).

DATETYPE

DATETYPE(*NO|*BEFORE|*AFTER)

Specifies if PKZIP should select files based upon a file modification date.

The allowable values are:

*NO No date selection will take place.

*BEFORE Files with a modification date before the date in
DATETYPE will be selected.

*AFTER Files with a modification date on or after the date in
DATETYPE will be selected.

DBSERVICE

DBSERVICE (*NO|*YES)

Specifies if the iSeries special database extended file attributes describing the
database file, fields and keys are to be store in the archives. This will force the

92

option EXTRAFLD(*YES). The database will also be stored in binary mode. This mode
can produce larger archive files.

The allowable values are:

*NO Does not store database extended services attributes.

*YES Stores the database extended service attributes in the
archive file and treat non-SAVF as a database.

DFTARCHREC

DFTARCHREC(132|Record Length)

Specifies the record length to use when creating an archive file in the QSYS library
system. If the TYPARCHFL parameter is *DB, and the archive file does not exist, the
archive file will be created with the record length specified in this parameter.

Note: A large record length will leave a high residual number if only one byte is use
in the last record.

The allowable values are:

132 Default is record length of 132 to match previous
versions.

Record Length A decimal number from 50 to 32000.

DELIM

DELIM(CRLF |CR |LF |LFCR)

When compressing a text file (not binary), the DELIM parameter specifies what
characters are to be appended at the end of records to serve as delimiters. The
delimiter is removed from the record when it is decompressed.

The allowable values are:

CRLF This is the default selection. Specifies for PKZIPi to use
the default delimiter CR-LF (x’0D0A’) at the end of each
text record.

CR Appends an ASCII carriage return (hex 0D).

LF Appends an ASCII line feed character (hex 0A).

LFCR Appends an ASCII line feed character (hex 0A0D).

 93

Note that transfers of MS-DOS records uses a CRLF for a delimiter, while UNIX
records use a LF.

DIRNAMES

DIRNAMES(*YES|*NO)

Specifies to store directories as an entry. This is valid only for files in IFS.

*YES Store the directories as entries in the archive.

*NO Do not store directories as an archive entry.

DIRRECRS

DIRRECRS(*NONE|*FULL|*NAMEONLY)

IFS only. Specifies whether to search recursively through directories for file selection,
or only search the current, specified directory.

The allowable values are:

*NONE Search only the current, specified directory.

*FULL Search through all directories by starting with the
current, specified directory for selected files. If *FULL is
used, and * is for file selections, all files found in all
directories below the current directory will be selected.

*NAMEONLY To be considered a hit, the full path and file name must
match the selection statements exactly.

ENTPREC

Requires SecureZIP

Encryption Recipients :
 LookUp Type *DB *DB, *LDAP, *FILE...
 Recipient ______________________________________

 Password (If Private) . . . ______________________________________
 Required *RQD *RQD, *OPT
 + for more values _

Or

ENTPREC((*MBRSET 'pkwareCertAdmin04.cer' () *RQD))
ENTPREC((*FILE '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' ()
*RQD))
ENTPREC((*FILE '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.pfx'
(‘mypassword’) *RQD))
ENTPREC((*DB ‘EM=bill.Somebody@pkware.com' () *RQD))
ENTPREC((*LDAP ‘EM=bill.Somebody@pkware.com' () *RQD))

94

ENTPREC((*INLIST 'ATEST/INLIST(ENGNEER1)' *N)
The encryption recipient parameter defines one to many Recipients which is to be
included for the ZIP process. This parameter allows 1-4 types of certificate searches
to take place along with providing the ability for an include file that may contain the
recipients.

The specification of this recipient ENTPREC parameter, triggers encryption to take
place during ZIP processing utilizing the found recipients along with any password
that may be entered.

There are four entries for the ENTPREC parameter (lookup type, recipient, password,
and required).

Lookup Type (*NONE |*DB |*LDAP |*FILE |*MBRSET |*SPONSOR |*SAME)

The Lookup type would be the type of recipient search that will be used for the
recipient string.

• *DB - The recipient string is defined to search using the Certificate Locator
Database to access the digital certificate.

• *LDAP - The recipient string is defined to search using the LDAP server to
access the digital certificate.

• *FILE - The recipient string is defined to read a specific file in a specific path
in the IFS in order to access the digital certificate.

• *MBRSET - The recipient string is defined to read this specific file from the
enterprise public certificate store to access the digital certificate.

• *INLIST - The recipient string defines a specific file that will contain 1 to
many recipients.

• *SPONSOR - The recipient string is the encryption recipient file for a
sponsoring partner. This is only valid for PKWARE PartnerLink.

Recipient (The recipient string name)

The recipient string format depends on what was specified for the Lookup type.

• If type is *DB: The recipient string will either be an email address or the
common name of the certificate. This depends on the configuration setting in
PKCFGSEC parameter CERTDB. To override the default selection mode, you
can prefix the string with EM= for email address or CN= for the common
name.

For example:

ENTPREC((*DB ‘bill.Somebody@pkware.com' () *RQD)
 (*DB ‘CN=bill Somebody' () *RQD)
 (*DB ‘EM=bill.Somebody@pkware.com' () *RQD))

• If type is *LDAP: The recipient string will either be an email address or the
common name of the certificate depending on the search mode configuration
setting in PKCFGSEC parameter LDAP. To override the default selection mode,
you can prefix the string with EM= for email address or CN= for the common
name.

For example:

 95

ENTPREC((*LDAP ‘bill.Somebody@pkware.com' () *RQD)
 (*LDAP ‘CN=bill Somebody' () *OPT)
 (*LDAP ‘EM=bill.Somebody@pkware.com' () *RQD))

• If type is *FILE: The recipient string is defined to read a specific file in a
specific path of the IFS. This file should be public-key X.509 file or private-
key X.509 certificate file.

For example:

ENTPREC((*FILE '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' ()
*RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
‘/yourpath/PKWARE/Cstores/public’.

• If type is *MBRSET: The recipient string is defined to read a specific file from
public certificate store / private certificate store of the IFS. This file should be
public-key X.509 file or private-key X.509 certificate file.

For example:

ENTPREC((*MBRSET 'pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path of the
public certificate store defined in the Enterprise Security Configuration public
store(parameter CSPUB). If a password was included, the file would be searched for
in the Enterprise Security Configuration private store (parameter CSPRIV).

• If the type is *INLIST: The recipient string defines a full file name of an input
list file that contains records of ENTPREC shortcut parameters. The type of file
will in the QSYS library file system if TYPLISTFL(*DB) is set and will be a path
file name in the IFS if TYPLISTFL(*IFS) is set. The format of the ENTPREC
shortcut parameters are define below in the *INLIST usage section.

• If type is *SPONSOR, the recipient string is the sponsor recipient file stored in
the ‘…/Sponsor/Recip’ folder. If the recipient string is all numeric, the name
will automatically be formatted as R0000000.p7, assuming that the number is
the sponsor ID number.

Password (Private Cert Password)

The password is required only if the certificate that is being selected is a private
certificate. This option should be omitted if a public certificate will be utilized.

Required (*RQD|*OPT|*SAME)

If *RQD, then this recipient must be found during the selection, and the certificate
must be valid, or the ZIP/UNZIP run will fail.

Usage Notes:

The ZIP process only requires a X.509 public-key format certificate to encrypt files.
The UNZIP process requires X.509 private-key format certificate file to decrypt files
and this will the input of a password.

For inlist that contains a password to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.

96

Otherwise this would leave a security hole where other users could browse the
password.

*INLIST Usage:

If *INLIST is defined on the ENTPREC parameter, then the recipient field will be a file
that SecureZIP will read to include recipients. The format is very similar to the
ENTPREC parameter describe above except each line recipient starts with
“{RECIPIENT=” and is terminated by the “}” character with the semi-colon “;” as a
separator for each entry.

{RECIPIENT=Lookup Type; Recipient; Password; Required}

Lookup Type See Lookup Type in ENTREC excluding the INLIST

Recipient See Recipient in ENTREC.

Password See Password in ENTREC.

Required See Required in ENTREC, but use RDQ for *RQD and OPT for
*OPT.

Examples:

{RECIPIENT=MBRSETEM; mypassword;RQD}

Sample 1: tstpriv_db4.inlist.
{RECIPIENT=DB;EM=PKTESTDB4@nowhere.com;PKWARE;RQD}

Sample 2: tstpriv_mb3.inlist.
{RECIPIENT=MBRSET;pktestdb3.pfx;PKWARE;RQD}

Sample 3: tstpubl1.inlist.

{RECIPIENT=MBRSET;pktestdb3.crt;;RQD}
{RECIPIENT=MBRSET;pktestdb4.crt;;OPT}

Sample 4: tstpubl2.inlist.

{RECIPIENT=DB;EM=PKTESTDB3@nowhere.com;;RQD}
{RECIPIENT=DB;CN=PKWARE Test4;;OPT}

ENCRYPOL

Requires SecureZIP

Encryption Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...

 97

 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values

Or

ENCRYPOL(*WARN (*SYSTEM))
ENCRYPOL(*WARN (*ALL *NOTTRUSTED))
ENCRYPOL(*SYSTEM (*ALL *NOTEXPIRED))

This parameter defines the processing options and filters that should apply when the
ENTPREC is used to encrypt files with certificate keys.

Validate Level (*VALIDATE |*WARN |*SYSTEM)

The validate level specifies the type of encryption certificate error processing that is
used if certificates are specified in ENTPREC. If *SYSTEM is specified, the enterprise
setting from PKCFSEC is used. If the enterprise setting is defined as lockdown, then
this parameter cannot be revised and a warning will be issued if a change is
detected.

• *SYSTEM - Indicates the authentication processing that is set in the
environmental setting will be used.

• *VALIDATE – Indicates that when encryption with certificates (ENTPREC
parm) takes place and a failure based on the filters occurs, the run will be
considered a failure and the message issued at the end will indicate one or
more errors during the run.

• *WARN - Indicates that when encryption with certificates (ENTPREC parm)
takes place and a failure based on the filters occurs, the failure is only
considered a warning. The messages at the end of the run will not consider
any failed filters for encryption certificates as errors.

Filters (*SYSTEM |*ALL |*NONE |*TRUSTED |*EXPIRED |*REVOKED |*NOTTRUSTED
|*NOTEXPIRED |*NOTREVOKED)

The ENTPREC certificate filter policies settings are defined in the enterprise security
file supplied by the SecureZIP administrator (see PKCFGSEC). These global policy
settings can be revised with sub-parameter values, but if the enterprise setting is
defined as lockdown, this parameter cannot be revised and a warning will be issued if
a change is detected. The variables are cumulative from the global setting.

• *SYSTEM – All filter policies are from the global settings.

• *ALL - This sub-parameter activates all levels of authentication. If followed
by negating sub-levels, then all but those negating levels are activated. For
example: *ALL, NOTEXPIRED means that expired certificates will not cause an
authentication error, but TRUST and REVOKE must both be satisfied.

• *NONE – Will negate all the policies.

• *TRUSTED – This sub-parameter signifies that the entire certificate authority
chain must be validated. This includes locating the root (“self-signed”)
certificate on the local system.

• *EXPIRED – This sub-parameter signifies that certificate date range
validation should be performed on the certificates (including the certificate

98

authority chain). Although the term “expired” is used, a certificate that has
not yet reached its valid data range specification will fail.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer consider
that certificate to be valid. The encryption certificate request will fail if any of
the certificates in the trust chain are found to have been revoked or if the
revocation status could not be determined.

• *NOTTRUSTED – Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED – Negates the *REVOKED filter.

ERROPT

ERROPT(*END|*SKIP)

Specifies what action to take if an error occurs while processing (selecting or
compressing) a spool file.

The allowable values are:

*END The PKZIP will end without completing the compression
of the file. The archive is not updated.

*SKIP The program will skip the file with the input error and
continue to process all other files to completion.
Message AQZ0022 will be issued at the end to indicate
that an error occurred.

EXCLFILE

EXCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be excluded. This can
be used with or without the EXCLUDE parameter. See parameter TYPLISTFL for file
system type information.

*NONE No list file will be processed.

path/filename Enter the file path and name of the file to process. The
layout depends on which file system you want the file
created.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

 99

EXCLUDE

EXCLUDE(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be excluded from the PKZIP
run. One or more names can be specified. Each name should be in the OS/400 file
system format, such as, QSYS is library/file(member) and IFS is directory/file, and
can include wildcards “*” and “?.”

Note: If TYPE(*VIEW) is being used, then the format for these names is the
MS/DOS format.

The PKZIP program can also exclude file specifications by using the list file
parameter EXCLFILE with a list of names to exclude.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification1'

'file_specification2'

'file_specification n'

EXTRAFLD

EXTRAFLD(*YES|*NO)

Specifies if the basic PKZIPi extended file attributes should be stored in the archive.
Some basic file attributes are record size, library text description, file text
description, etc.

The allowable values are:

*YES Store the basic normal iSeries file attributes. This is the
default and will be the same as coding *BOTH.

*NO Do not store any extended attributes.

*CENTRAL Stores the basic normal iSeries file attributes in only the
archive’s central directory. This will reduce the overall
archive size by only storing the attributes in the Central.

*LOCAL Stores the basic normal iSeries file attributes in only the
archive’s local directory. Warning: PKUNZIP only
utilizes the central directory for extended data
attributes.

*BOTH Stores the basic normal iSeries file attributes in both the
archive’s central directory and local directory.

100

Migration consideration: if the archive will be processed by an earlier release of
PKZIP for OS/400™ and the attributes are required, then *BOTH should be coded.

FILES

FILES(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be selected in the PKZIP
process. One or more names can be specified. Each name should be in the OS/400
file system format, such as, QSYS is library/file(member) and IFS is directory/file,
and can include wildcard “*” and “?.” For the IFS, the path and file name can up to
256 characters and can contain embedded spaces.

If the FILES parameter starts with a question mark (?) or a dash (-), then PKZIP
assumes that a Save command is being entered to activate the iPSRA feature. For
details on how to enter iPSRA commands, see Chapter 6.

The key word “*COPY” as an option of FILES parameter, will copy the files from the
input archive to the new archive. This can be used when creating a new archive with
a different name and avoid selecting any new files.

Note: If TYPE(*VIEW) or TYPE(*DELETE) is being used, then the format for these
names is the MS/DOS format.

The PKZIP program can also have file specifications selections to include by using the
list file parameter INCLFILE with a list of names to select.

Files may also be excluded. See the EXCLUDE parameter.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification1'

'file_specification2'...

'file_specification n'

FILESTEXT

FILESTEXT(*NO|*ALL|*NEW|*UPDATE)

Specifies if PKZIP allows the editing (and the type of editing performed) of a file’s
text comments that are stored in an archive.

The allowable values are:

*NO No comment editing (the default).

*ALL Add comments or edit comments for all files in the
archive.

*NEW Add comments only for new files that are added to the
archive.

 101

*UPDATE Add or edit the comments of files that are added,
updated, or freshened in the archive. Only file
comments of files that are affected by a change are
eligible for editing.

FILETYPE

FILETYPE(*BINARY|*DETECT|*EBCDIC|*FIXTEXT|*TEXT)

Specifies whether the files selected are treated as text or binary data. For text files
added to an archive, trailing spaces in each line are removed, the text is converted
to ASCII (based on the translation tables) by default, and a carriage return and line
feed (CR/LF) are added to each line before the data is compressed into the archive.
Binary files are not converted.

The default is *DETECT; where PKZIP attempts to make a determination based on
the nature of the data itself. The program will read in a portion of the data, evaluate
it, and determine the appropriate process.

Note: This will lower performance time. A message will display the type used when
compressing.

Use of text file option is usually faster because PKZIP has to process less data than
with *BINARY, but more processing may also take place to perform the translation.

If the file is a SAVF or a database file (with DBSERVICE(*YES)), then the file will be
processed as binary regardless of what option is specified.

*BINARY Specifies that the files selected are binary files and no
translation should be performed.

*DETECT The PKZIP program will try to determine the data type
of text or binary.

*EBCDIC Specifies that the files selected are text files and leaves
it in EBCDIC without performing any translation. This is
good only if the files are to be used on an iSeries or
IBM-type mainframe. If they will be unzipped to a PC
file, then a translation from EBCDIC to ASCII is required.

*FIXTEXT Specifies that the files selected are text files with a fixed
record length based on the iSeries file’s record length
and translation will be performed using the translate
tables specified in the TRAN option. This means the
compressed file will contain records with trailing spaces
followed by a CR and LF. This is only valid for QSYS
library file types as files in the IFS do not contain a
record length.

*TEXT Specifies that the files selected are text files and
translation will be performed using the translate tables
specified in the TRAN option.

102

FNE

Requires SecureZIP

FNE(*YES|*NO *YES|*NO

File Name Encryption :
 Create FNE Archive *NO *NO, *YES
 Overwrite In FNE *NO *NO, *YES

FNE(*NO *NO)

Specifies the activation and use of the file name encryption feature.

The first option controls the creation of an archive with file name encryption.

*NO Do not create the new/updated archive as filename-
encrypted archive.

*YES Create the new or updated archive into a filename-
encrypted archive. If the archive exist, then the security
features will be defined by the inputted FnE archive. If
no archive exist, the new filename-encrypted archive will
use the encryption method define with ADVCRYPT
parameter and the PASSWORD and/or ENTPREC
parameters.

The second option controls the overwriting of a filename-encrypted input
archive to remove the filename encryption. This option is used with the first
option of *NO (do not create an filename-encrypted archive), and with an
existing filename-encrypted archive is input for update. Coding this option to
*NO indicates that you know that the input archive is filename-encrypted and
you want overwrite it to produce an archive that is not filename-encrypted.

*NO Do not allow an existing filename-encrypted archive to
be changed to a non-filename-encrypted archive.

*YES Allow an existing filename-encrypted archive to be
changed to a non-filename-encrypted archive when
archive is updated.

FTRAN

FTRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use in translating "file names, comments, and
password" from the iSeries EBCDIC character set to the character set used in the
archive file (normally ASCII character set). A default internal table is predefined. See
Appendix D for additional information.

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO

 103

8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the internal tables that were the
default in V5 PKZIP.

membername Specify the member name in the file PKZTABLES that
will be parsed and used to translate "file names and
comments" files to the archive character set. The
member should have the exact format of member
ISO9959_1 in file PKZTABLES. See Appendix D for
information on defining translation tables.

GZIP

GZIP(*YES|*NO)

If this option is set to *YES, PKZIP will create a compressed archive in the GZIP
format. The GZIP format only allows for one file or member per archive and all text
data is stored in ISO 8859- 1 (LATIN- 1) character set. The GZIP format is very
different from the PKZIPi archive format, a program that can process PKZIP®
archives will not necessarily process a GZIP archive correctly. The GZIP archive
created conforms to the GZIP specifications RFC1951 and RFC1952.

Do not use this option if the archive is to be unzipped on another platform where
GZIP compatibility is not confirmed.

The allowable values are:

*YES The PKZIP program will create a compressed archive in
the GZIP format.

*NO The PKZIP program will create an archive in the PKZIP®
format. This is the default.

IFSCDEPAGE

IFSCDEPAGE(*NO| Code-Page)

If this option is set to *NO, PKZIP will read IFS files using the code page that is
registered for the file. Otherwise, PKZIP will read IFS files with the specified code
page.

This parameter also controls the spool file ASCII conversion for *TEST and *PDF
documents. When *NO is specified for spool Files, the conversion will use code page
819.

The allowable values are:

*NO The PKZIP program will read IFS files with the code page
registered for the file. If the file is a spool file, the code
page 819 will be used. This is the default.

104

Code-Page The PKZIP program will read IFS files with the specified
code page value. If the file is a spool file, it is the code
page that a spool file will use for ASCII translation.

INCLFILE

INCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be selected for
inclusion. This can be used with or without the FILES parameter. See parameter
TYPLISTFL for file system type information.

*NONE No Include list file will be processed. This is the default.

path/filename Enter the file path and name of the file to process. The
layout depends on which file system you want to create
the file in.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

MSGTYPE

MSGTYPE(*PRINT|*SEND|*BOTH)

Specifies where the display of messages and information should be shown. The
PKZIP program has the ability to send messages that appear on the log and/or the
ability to print to stdout and stderr. If working interactively, stdout and stderr will
show upon the dynamic screen. If submitted via batch, you can override them to
print in an OUTQ or build a CL and save them to an outfile.

*SEND Send the information to the log with send message
commands.

*PRINT Send the information to stdout and stderr.

*BOTH Send the information to the log with send message
commands and also to stdout and stderr.

PASSWORD

PASSWORD(Archive Password)

Specifies a password for files being added to an archive. This password may be up to
64 characters in length and is case sensitive. All files selected for archiving will be
encrypted using the specified password.

Note: There is no way to extract the password used from the archive data. If the
password is forgotten, the file will become inaccessible. If files in an archive need to
have different passwords, PKZIP must be run for each password required.

 105

Since the password is entered in EBCDIC, the translation table referenced in the
FTRAN parameter is used to translate it to ASCII. Care should be take when using
the FTRAN override and when using a password. To use password-protected files, the
same FTRAN override option is required.

SELFXTRACT

SELFXTRACT (*MAINTAIN| WINDOWS| UNIX| LINUX| *REMOVE)

This licensed feature specifies the action to take concerning self extracting archives.
The actions are to maintain the current archive as is, create the new archive with a
self extracting preamble, or to remove the self extracting preamble if one exist in the
archive.

The self extracting programs are held as binary entities in the PKZIPi library in the
file PKZIPSFX. The appropriate member is loaded and the executable data copied to
the beginning of the archive as a preamble when requested.

The resulting archive can still be processed by PKZIPi as a normal ZIP archive.

The allowable values are:

MAINTAIN If the current archive contains a self extracting
preamble, it will be maintained at the beginning of the
updated archive.

WINDOWS The Windows version of the self extracting preamble will
be installed to archive. (Microsoft Windows 95 and later)

AIX The AIX version of the self extracting preamble will be
installed to archive. (IBM AIX Version 4.0 and later)

HP_UNIX The HP UNIX version of the self extracting preamble will
be installed to archive. (HP/UX Version 9.0 and later)

SUN_UNIX The Sun UNIX version of the self extracting preamble
will be installed to archive. (Sun Solaris 2.3 (SunOS 53)
and later)

LINUXINTEL The Linux version of the self extract preamble (if
available) will be installed to archive. (LINUX Kernel 2.x
for Intel Note:libc-5 must be installed on the target
system.)

*REMOVE If the current archive contains a self extracting
preamble, it will be removed.

SFUSER

SFUSER (*CURRENT|*ALL |User Name List)

Specifies the user names that created spool files that will be selected. This value is
ignored if SFJOBNAM is coded.

106

The allowable values are:

*CURRENT Only files created by the user running this command are
selected.

*ALL Files created by all users are selected.

User Name Specify up to 10 user names. Only files created by
those users are selected.

SFQUEUE

SFQUEUE (*ALL |Name|*LIBS)

Specifies the output queue that will be searched for the spool file selections. If no
OUTQ library is specified, it will default to *LIBL.

The allowable values are:

*ALL Files on any device-created or user-created output
queue are selected.

OUTQ The OUTQ that will be searched.

OUTQ Library The library where the OUTQ resides. Defaults to *LIBL.

*LIBS *LIBS will search all OUTQ that exist in the specified
OUTQ Library. If *LIBS is selected then the library
cannot be blank, nor contain *LIBL nor *CURRENT.

SFFORM

SFFORM (*ALL | *STD| Form Type)

Specifies the spool file form type that is on the spool files that will be selected.

The allowable values are:

*ALL Files for all form types are selected.

*STD Only files that specify the standard form type are
selected.

Form Type Only spool files with this specific form type will be
selected.

SFUSRDTA

SFUSRDTA (*ALL| User Data)

The user data tag associated with the spool file to select.

The allowable values are:

*ALL Files with any user data tag specified are selected.

 107

User Data Only spool files with this specific user data tag will be
selected.

SFSTATUS

SFSTATUS (*ALL |*READY|*HELD|*CLOSED|*SAVED|*PENDING|*DEFERRED)

Specifies the statuses of the spool files to be selected. Up to four statuses can be
selected for one run.

The allowable values are:

*ALL All spool file status will be considered for selection.

*READY Only spool files with a status of *READY will be selected.

*HELD Only spool files with a status of *HELD will be selected.

*CLOSED Only spool files with a status of *CLOSED will be
selected.

*SAVED Only spool files with a status of *SAVED will be selected.

*PENDING Only spool files with a status of *PENDING will be
selected.

*DEFERRED Only spool files with a status of *DEFERRED will be
selected.

SFJOBNAM

SFJOBNAM(Blank|*|Spool File Jobname/User/Job Number)

Specifies the job name, user name, and job number that will be used to select spool
files. If anything other than blanks is in SFJOBNAM parameter, it will be used as the
primary selection criteria. If any of the three fields (job name, user name, and job
number) are specified, then all three fields must be entered and be valid.

The allowable values are:

Blank This is the default selection. This will cause all other
selection criteria to be used for spool files.

* The * will cause the current job-name/user-name/job
number to be used to select spool files.

Job-name Specify the name of the job to be selected. If no job
qualifier is given, all of the jobs currently in the system
are searched for the simple job name.

User-Name Specify the name that identifies the user profile under
which the job is run.

Job-Number Specify the job number assigned by the system.

108

SFTARGET

SFTARGET (*SPLF|*TEXT|*PDF|*TEXT1|*TEXT2)

Specifies the format of the file that will be stored in the archive.

The allowable values are:

*SPLF This is the default selection. This will compress the
spool file in a spool file format with all of the spool file
attributes. This format is only valid on an AS/400. If
the archive is extracted, it will take on the latest spool
file settings, such as, job name, user, job number, spool
file number, etc. The suffix for this selection is SPLF.
Parameter SFTGFILE is required to be *GEN1 for
SFTARGET(*SPLF).

*TEXT The spool file will be saved in the archived as an ASCII
text document. The suffix for this selection is .TXT.
each new page will have a form feed control character.

*TEXT1 The spool file will be saved in the archived as an ASCII
text document. The suffix for this selection is .TXT.
Each new page will have a carriage control and line feed
control characters.

*TEXT2 The spool file will be saved in the archived as an ASCII
text document. The suffix for this selection is .TXT.
Each page will have a carriage control and line feed
control characters for blanks lines to fill out a page with
the number lines required by the spool file attribute.

*TEXTFC The spool file will be saved in the archive as an ASCII
Text document. The suffix for this selection is .TXT.
Each new page will have a form feed control character.

*PDF The spool file will be saved in the archived as a PDF text
document. The suffix for this selection is .PDF. The size
will be adjusted based upon the width and length of the
spool file.

*PDFLETTER The spool file will be saved in the archived as a PDF text
document. The suffix for this selection is .PDF. The size
will be adjusted based upon the width and length of the
spool file.

*PDFLEGAL The spool file will be saved in the archived as a PDF text
document. The suffix for this selection is .PDF. The size
will be adjusted based upon the width and length of the
spool file.

SFTGFILE

SFTGFILE (|*GEN1|*GEN2|*GEN1P|File Name)

Specifies the how the file name will be stored in the archive.

 109

The allowable values are:

*GEN1 GEN1 is the default selection. This generates a very
specific name using most of the spool file name
attributes to form the file name so that it will not be
duplicated. *GEN1 is required if SFTRAGET is *SPLF.
The name will be built as follows:

 “Job-Name/User-Name/#Job-Number/Spool-File-
Name/Fspool-File-Number.Suffix”

 ”MYJOB/BILLS#152681/INVOICE/F0021.SPLF”

 The suffix is dependent on the SFTARGET setting.

*GEN1P *GEN1P generates the same file name as *GEN1 except
instead of a '/' separator, *GEN1P will use a '.' as name
separator.

*GEN2 *GEN2 uses the spool file name and appends the spool
file number followed by the suffix that is depended on
the SFTARGET setting. Caution should be taken in that
a duplicate file name in the archive could be created. An
example of GEN2 is a spool file INVOICE with spool file
number of 21 that will be converted to a text file will
generate a file name of INVOICE21.TXT.

File Name This parameter should only be used when selecting one
specific spool file where you want a specific file name.

SPLFILE

SPLFILE (*ALL| Spool File Name)

Specifies the spool file name that will be selected. This parameter is used along with
all the other spool file selection parameters to determine the spool files to select.

The allowable values are:

*ALL This is the default setting. *ALL indicates that spool file
name is not important.

Spool File Name A specific spool file name that will be searched for and
selected.

SPLNBR

SPLFILE (*ALL|*LAST| Spool File Number)

Specifies the number of the spool file from the job whose data records are to be
selected. If *ALL is coded then all file numbers are considered. This parameter is
only valid when the SFJOBNAM parameter or SPLFILE is used. This parameter is used
along with all the other spool file selection parameters to determine the spool files to
select.

The allowable values are:

110

*ALL This is the default setting. *ALL indicates that spool file
number is not important.

*LAST The spooled file with the highest number is used.

Spool File Number A number 1-9999 to specify the number of the spooled
file whose data records are to be selected.

SIGNERS

Requires SecureZIP

Signing Certificates :
 File/Archive *FILE *FILE, *ARCHIVE, *ALL
 LookUp Type *DB *DB, *FILE, *MBRSET, *INLIST
 Signer ___
 Password (If Private) . . . ___
 Required *RQD *RQD, *OPT

Or

SIGNERS((*FILE *MBRSET
 'pkwareCertAdmin04.pfx' (password) *RQD))
SIGNERS((*FILE *FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx' (password) *RQD))
SIGNERS((*FILE *FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx' (‘mypassword’) *RQD))
SIGNERS((*FILE *DB
 ‘EM=bill.somebody@pkware.com' (password) *RQD))
SIGNERS((*FILE *INLIST 'ATEST/INLIST(ENGNEER1)' *N)

This parameter identifies the public key certificate with private key that is to be used
to digitally sign files to be added to the archive and/or the archive directory. Multiple
signing certificates may be applied to the files but only one signer is allowed to sign
the archive directory. Signing an archive by signing its central directory enables
people who receive the archive to confirm that the archive as a whole is not
changed. By contrast, signing only individual files in an archive enables people to
confirm that the particular signed files are unchanged but leaves open the possibility
that the archive has had files added or removed.

There are five options for SIGNERS.

Signing Type File/Archive (*FILE |*ARCHIVE |*ALL)

The File/Archive selection determines whether the files, archive or both are to be
signed during the ZIP run. Only one signer can be specified for an archive. If the
lookup type is *INLIST, then this option will be ignored and will pickup from the
records in the inlist file.

• *FILE – All new files being compressed in the run will be signed by this
private key and a signature entry will be added to the archive.

• *ARCHIVE – The archive directory will be signed by this private key and a
signature entry will be added to the archive.

• *ALL – Both *FILE and *ARCHIVE for the signer will be used.

 111

Lookup Type (*DB |*FILE |*MBRSET |*INLIST)

The lookup type would be the type of signer search that will be used for the signer
string to lookup the private key.

• *DB - The signer string is defined to search using the Certificate Locator
Database to access the digital certificate and private key.

• *FILE - The signer string is defined to read a specific file in a specific path in
the IFS in order to access the digital certificate and private key.

• *MBRSET - The signer string is defined to read this specific file from the
enterprise private certificate store to access the digital certificate and private
key.

• *INLIST- The signer string defines a specific file that will contain one to many
signers. The TYPLISTFL parameter must specify the file type for the inlist.

Signer (The signer string name)

The signer string format depends on what was specified for the lookup type.

• If lookup type is *DB, the signer string will either be an email address or the
common name of the certificate. This depends on the configuration setting in
PKCFGSEC parameter CERTDB. To override the default selection mode, you
can prefix the string with EM= for email, or CN= for the common name.

For example:

SIGNERS((*FILE *DB ‘bill.somebody@pkware.com' (password) *RQD)
 (*ARCHIVE *DB ‘CN=bill somebody' (password) *RQD)
 (FILE *DB ‘EM=bill.somebody@pkware.com' (password) *OPT))

• If lookup type is *FILE, the signer string is defined to read a specific file in a
specific path of the IFS. This file should be public key X.509 with the private
key X.509 certificate file.

For example:

SIGNERS((*ARCHIVE *FILE '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx'
(password) *RQD))

The digital certificate file with the private key ‘pkwareCertAdmin04.pfx’ will be
in the full path '/yourpath/PKWARE/Cstores/private’.

• If lookup type is *MBRSET, the signer string is defined to read a specific file
from the public certificate store and/or the private certificate store of the IFS.
This file should be public key X.509 with the private key X.509 certificate file.

For example:

SIGNERS((*ALL *MBRSET 'pkwareCertAdmin04.pfx' (password) *RQD))

The digital certificate file ‘pkwareCertAdmin04.pfx’ will be in the full path of
the private certificate store defined in the enterprise security configuration
private store (parameter CSPRV). Since the password was included, the file
will be searched for in the enterprise security configuration private store
(parameter CSPRIV).

• If lookup type is *INLIST the signer string defines a full file name of an input
list file that contains records of SIGNERS shortcut parameters. The type of file
will exist in the QSYS library file system if TYPLISTFL(*DB) is set and will be a

112

path file name in the IFS if TYPLISTFL(*IFS) is set. The format of the
SIGNERS shortcut parameters are defined below in the *INLIST usage
section.

Password

This designates the password that is required for a private key (PKCS#12 file). When
a value is specified, the target must be an X.509 PKCS#12 private key certificate.

The PASSWORD value may contain blanks and is delimited by the closing right
parenthesis ")" of the signing command.

Required (*RQD|*OPT|*SAME)

If *RQD then this signer MUST be found during the selection and the certificate
MUST be a valid certificate with a private key or the run will fail.

Usage Notes:

A NULL file (binary file having zero bytes of data) will be signed. However, note that
the digital signature is based on a fixed hash value.

The entire data stream of each file is run through the hash algorithm before
compression or encryption. However, file text data is translated before hashing so
that the receiving system is able to hash the identical stream after
decryption/decompression.

The processor requirement for a file signature is directly related to the size of the
file(s) being signed and/or authenticated (see SIGN_HASHALG). Therefore, when
processing costs are a consideration, the decision whether to use SIGNERS to sign
large files should be based on the business case. Sometimes signers for the archive
may be more appropriate. (The directory size is proportional to the number of files in
the archive, not the physical size of the file data.)

A separate signing operation is performed for each supplied certificate, for each file.
Processor and elapsed time will be impacted in proportion to the number of
signatories and files selected.

The number of file signatures that can be held for each file is constrained by a
number of factors. These include EXTRAFLD(*YES) and DBSERVICE(*NO), the size of
the signatures generated (based on the size of the certificate information), the
number of certificates in the authenticating certificate authority chain, the number of
different certificate authorities used in association with the signing certificates, if
FNE(*YES) is specified, and the number of recipients for certificate-based encryption
of files. For planning purposes, typical ZIP operations will support up to 10 file
signatories as a rule, although more or fewer may be achieved in practice.

It is important that the password is entered in the correct case. Any variation in case
or misspelling will result in a public key certificate access attempt (which will fail for
a private key PKCS#12 certificate). Please note that passwords will be masked out in
all output displays.

A local certificate store configuration is required to complete the processing of this
command. Even when a direct FILE specification is made to locate the private key
certificate, the CS and ROOT certificate store components must be accessible to
complete the certificate signing chain within the archive. This information is required
to complete authentication processing on the target system when the local certificate

 113

store on that system does not contain the certificate authority chain required to
validate TRUST (see PKCFGSEC).

Processing will be terminated if none of the requested certificates can be accessed,
regardless of the “R” required flag. If multiple requests are made and at least one
signature is found, processing will continue normally.

Signed files are tolerated by prior releases of PKZIP for iSeries and SecureZIP for
iSeries but are not processed for authentication.

For inlist that contains a password to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.
Otherwise this would leave a security hole where others could browse the password.

*INLIST Usage:

If *INLIST is defined on the SIGNERS parameter, then the signer filed will be a file
that SecureZIP will read to include the signer. The format is very similar to the
SIGNERS parameter described above except each line signer starts with
“{SIGNERS=” and is terminated by the “}” character with the semi-colon “;” as a
separator for each entry.

{SIGNERS=Signing Type, Lookup Type; Signer; Password; Required}

Signing Type See Signing Type in SIGNERS

Lookup Type See Lookup Type in SIGNERS excluding the INLIST

Signer See Signer in SIGNERS.

Password See Password in SIGNERS.

Required See Required in SIGNERS, but use RDQ for *RQD and OPT for
*OPT.

Examples:

Sample 1: tstsign_db1.inlist.
{SIGNERS=File;DB;EM=PKTESTDB4@nowhere.com;PKWARE;RQD}

Sample 2: tstsign_mb2.inlist.
{SIGNERS=ARCHIVE;MBRSET;pktestdb3.pfx;PKWARE;RQD}

SIGNPOL

Requires SecureZIP

Signing Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...
 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values

114

Or

SIGNPOL(*WARN (*SYSTEM))
SIGNPOL(*WARN (*ALL *NOTTRUSTED))
SIGNPOL(*SYSTEM (*ALL *NOTEXPIRED))

This parameter defines the processing options and filters that should take place if the
SIGNERS parameter is used to define the file or archive signing certificates.

Validate Level (*VALIDATE |*WARN |*SYSTEM)

The validate level specifies the type of signing processing that should take place if
the signer requests encounter an error. If *SYSTEM is specified, the enterprise
setting from PKCFSEC is used. If the enterprise setting is defined as Lockdown, then
this parameter cannot be revised and a warning will be issued if a change is
detected.

• *SYSTEM - Indicates the authentication processing that is set in the
environmental setting will be used.

• *VALIDATE - Indicates that when authentication takes place and a failure
occurs based on the filters, the run will be considered a failure, and the
message issued at the end will indicate one or more errors during the run.

• *WARN - Indicates that when authentication takes place and a failure occurs,
the failure is only considered a warning. The messages at the end of the run
will not consider any failed filters for signer certificates as errors.

Filters (*SYSTEM |*ALL |*NONE |*TRUSTED |*EXPIRED |*REVOKED |*NOTTRUSTED
|*NOTEXPIRED |*NOTREVOKED)

The signing filter policies settings are defined in the enterprise security file supplied
by the SecureZIP administrator (see PKCFGSEC). These global policy settings can be
revised with sub-parameter values, but if the enterprise setting is defined as
lockdown, this parameter cannot be revised and a warning will be issued if a change
is detected. The variables are cumulative from the global setting. The setting of
these filters defines what certificates are acceptable for signing.

• *SYSTEM - All filter policies are from the global settings.

• *ALL - This sub-parameter activates all levels of authentication. If followed
by negating sub-levels, then all but those negating levels are activated. For
example: *ALL, NOTEXPIRED means that expired certificates will not cause an
authentication error, but TRUST and REVOKE must both be satisfied.

• *NONE - Will negate all the policies.

• *TRUSTED - Each end-entity certificate used in the signature must be traced
back to a trusted root certificate. The CACA and CSROOT stores on the local
system performing the authentication check will be accessed to determine if
the entire certificate chain can be trusted. Although the root (“self-signed”)
certificate may be included within the archive, it MUST also exist in the
CSROOT store to complete the TRUSTED state.

• *EXPIRED - The digital certificates used to originally perform the signing
operation contain internal date ranges of validity. The signer operation will fail
if any of the certificates in the trust chain are not found to be within their
stated data range. Note that an end-entity certificate may have expired at the

 115

time that the archive is being accessed, and NOTEXPIRED may be used to
continue processing.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer consider
that certificate to be valid. The signer operation will fail if any of the
certificates in the trust chain are found to have been revoked or if the
revocation status could not be determined.

• *NOTTRUSTED - Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED - Negates the *REVOKED filter.

STOREPATH

STOREPATH(*NO|*YES)

Specifies whether to store the full path and file name in the archive, or to just save
the file name. If the file is an IFS file type, the path is all directories, from the
current directory, to the directory of the file. In the library system, the path is the
library and the file name. The member name is considered to be the archive name.

The allowable values are:

*YES Store all paths and the filename in the PKZIP archive.

*NO Store only the filename in the PKZIP archive.

TMPPATH

TMPPATH(*CURRENT| pathname)

Specifies a directory or library/file in which to build the temporary archive file. While
PKZIP is compressing data into an archive, a temporary archive file name is used.
The temporary file name is a 10-character name with a prefix of “PZ” followed by a
time stamp (PZtttttttt). If this option is *CURRENT, the temporary file is built in the
same directory (for library file systems it is same library/file with temporary
member) in which the new archive will be stored and is then renamed at the end of
the run to the archive name. If an override path is specified, the temporary archive
file is built into that specified path, and the file is then copied to its final archive path
at the end of the run. The temporary file name and path type will be the same as
specified for ARCHIVE. See parameter TYPARCHFL for file system type information.
Special libraries (such as QTEMP) are used frequently.

*CURRENT Specifies that the current archive path will be used (see
ARCHIVE) to build the temporary archive file
PZxxxxxxxx.

pathname Specifies a path name (if using IFS such as
/PKZIP/tempdir) or a library/file (if using the library
system).

116

NOTE 1: When using the QSYS library file system and specifying
“qtemp” as the TMPPATH, a dynamic file name and
member name is created in the library qtemp. At the
end of the run, the file and member are removed. If
any other combination of names is used, then a dynamic
member name is created and only the member is
removed.

NOTE 2: When using the QSYS library file system and specifying
a TMPPATH, there may be a slight performance
degradation because the archive file will have to be
copied from one library/file to another library/file.
Otherwise, if *CURRENT is used, the file member name
will only be renamed.

TRAN

TRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use with translating “data” from the iSeries EBCDIC
character set to the character set used in the archive file (normally the ASCII
character set). A default internal table is predefined (see Appendix D).

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the internal tables that were the
default in V5 PKZIP.

Member Name Specifies the member name in the file PKZTABLES that
will be parsed and used to translate data files to the
archive character set. The member should have the
exact format of member ISO9959_1 in file PKZTABLES
(see Appendix D for information on defining translation
tables).

TYPARCHFL

Archive File:
 Type *DB *DB, *IFS
 Check ZIP64 *NONE *NONE, *WARN, *FAIL

Or

TYPARCHFL (*IFS)
TYPARCHFL (*DB *WARN)
TYPARCHFL (*IFS *FAIL)

This parameter specifies the file system to create the archive and the archive
constraints.

 117

Archive Type (*IFS|*DB)

Specifies the type of file system in which the archive file will exist (see parameters
ARCHIVE and TMPPATH for additional information).

*DB Archive files are to be in the QSYS library file system.

*IFS Archive files are to be in the integrated files system
(IFS).

Check ZIP64 (*NONE |*WARN |*FAIL)

Specify the severity of message and return code when creating or updating an
archive and ZIP64 processing is required.

*NONE No action or message when ZIP64 constraint exceeded.

*WARN Warning message AQZ0613 will be issued but processing
will continue.

*FAIL Failure message AQZ0614 will be issued and process will
cease without building a new archive.

This feature may be of value when creating archives intended for distribution to
systems that may not be able to handle the ZIP64 processing attributes. This may be
due to the UNZIP software being used on the target system or the file system for the
related OS. (For example, some UNIX or Windows FAT file systems cannot handle file
sizes greater than 4 gigabytes).
Triggers for this option include:

• More than 65,535 files are being placed into the archive
• One or more source files are greater than 4 gigabytes in size
• The amount of data written to the archive exceeds 4 gigabytes

TYPFL2ZP

TYPFL2ZP(*DB|*IFS)

Specifies the type of file system that contains files to be zipped. Reflected for files in
parameters FILES and EXCLUDE.

*DB Files to be zipped are in the QSYS library file system.

*IFS Files to be zipped are in the IFS (integrated files system)
- Case sensitive selection.

*IFS2 Files to be zipped are in the IFS (integrated files system)
– Non-case-sensitive selection.

*DBA Files to be compressed are database files in the QSYS
library file system with database mode
"DBSERVICE(*YES)", and the records are to processed
in arrival sequence. This is only pertinent for database
files containing keys and when it is important to retain
the arrival sequence of the data.

*SPL Files to be zipped are spool files.

118

TYPLISTFL

TYPLISTFL(*DB|*IFS)

Specifies the “type of files system” that will be used for the input list file and/or the
output list file of selected items.

To use input list files, see parameters INCLFILE (file section list) or EXCLFILE (file
exclude list). To create an output list file of the selected file items, see parameter
CRTLIST.

*DB Files are in the QSYS library file system.

*IFS Files are in the IFS(integrated files system).

VERBOSE

VERBOSE(*NORMAL|*NONE| *ALL|*MAX)

Specifies how the detail will be displayed during a PKZIP run.

The allowable values are:

*NORMAL Displays most informative message to show PKZIP is
processing.

*NONE Displays only major exception information.

*ALL Displays all messages.

*MAX Used only for debugging purposes.

VPASSWORD

VPASSWORD(Archive Verify Password)

Specifies a verification password against the entered password since the PASSWORD
is not visible. This parameter is required for all encryption methods except ZIPSTD.
VPASSWORD follows all the rules of PASSWORD and must match exactly to the
archive password entered in PASSWORD parameter or the run will be terminated.

 119

8 PKUNZIP Command

PKUNZIP Command Summary with Parameter Keyword Format
If the OS/400 command prompt screen is to be used, the command format is simply:
PKUNZIP.

The command prompt screen is displayed when ENTER or PF4 is pressed. The
parameter keywords are displayed on this screen together with the available
keyword options. The required options can be selected before PF4 is pressed to
accept the selections. If the command and parameter keywords are entered together
on the command line, the required format is:

PKUNZIP keyword1(option) keyword2(option) . . . keywordn(option)

Keywords are delimited by spaces. The keyword “ARCHIVE” is the only positional
keyword where the keyword itself is not required. Whenever the word “path” is used,
its meaning depends on the file system that is being used. If IFS is used, path refers
to the openness true path type. If the library systems or *DB is used, path means
library/file, and then the file name refers to the member name.

120

TYPE(*VIEW)
(*EXTRACT}
{*NEWER}
{*TEST}

ARCHIVE(Archive Zip File name with path)

AUTHCHK(Authenticators) (SecureZIP Only)
 Authenticate Type {*FILE}

 {*ARCHIVE}
 {*ALL}

 Lookup Type {*DB }
 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}

 {*SPONSOR} (Reader Only)
 Recipient {Recipient String}
 Password (if Private) {Certificate password}
 Required {*RQD }

 {*OPT}

AUTHPOL (Authenticate Filters:) (SecureZIP Only)
Validate Level {*SYSTEM }
 {*WARN }
 {*VALIDATE}
 {*REQUIRED}
Validate Type {*NONE }
 {*ALL }
 {*ARCHIVE}
 {*FILE}
Filters {*SYSTEM }
 {*ALL}
 {*NONE}
 {*TAMPER}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTAMPER}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

CRTLIST({*NONE})

path/filename

CVTDATA(External Pgm Conversion Extended Data)

CVTFLAG({*NONE})
External Pgm Conversion Flags

CVTTYPE({*NONE})
{*DROP}
{*SUFFIX}

DFTDBRECLN({132})
{decimal number}

DROPPATH({*NONE})
{*ALL}
{*LIB}

ENTPREC(Decryption Recipients) (SecureZIP Only)
 Lookup Type {*DB }

 {*FILE}

 121

 {*MBRSET}
 {*INLIST}

 Recipient {Recipient String}
 Password (if Private) {Certificate password}
 Required {*RQD }

 {*OPT}
EXCLFILE({*NONE})

path/filename

EXCLUDE(file_specification1,)
file_specification2,
file_specificationn

EXDIR({*CURRENT})
path

FILES(file_specification1,)
file_specification2,
file_specificationn

FILETYPE({*TEXT})
{*BINARY}
{*EBCDIC}
{*DETECT}

FTRAN({*ISO88591})
{*INTERNAL}
 Member Name

IFSCDEPAGE({*NO})
Code-page

INCLFILE({*NONE})
path/filename

MSGTYPE({*PRINT})
{*SEND}
{*BOTH}

OVERWRITE({*NO})
{*YES}
{*PROMPT}

PASSWORD(Archive Password)

RSTIPSRA (Restore Command for iPSRA Files)

SFQUEUE ({*DFT})
{Library/Outq }SPLUSRID (

SPLUSRID {*DFT})
{User ID }

TRAN({*ISO88591})
{*INTERNAL}
 Member Name

TYPARCHFL({*DB})
{*IFS}

TYPFL2ZP({*DB})
{*IFS}

TYPLISTFL({*DB})
{*IFS}

122

VERBOSE({*NORMAL})
{*NONE}
{*ALL}
{*MAX}

VIEWOPT({*NORMAL})
{*DETAIL}
{*BRIEF}
{*COMMENT }
{*FNE}
{*FNEALL}

VIEWSORT({*ASIS})
{*DATE}
{*DATER}
{*NAME}
{*NAMER}
{*PERCENT}
{*PERCENTR}
{*SIZE}
{*SIZER}

 123

PKUNZIP Command Keyword Details

TYPE

TYPE(*EXTRACT|*NEWER|*TEST |*VIEW)

The TYPE keyword specifies the type of action PKUNZIP should perform on the ZIP
archive.

The possible actions are:

*VIEW Display output information about all files or selected files
contained in an archive. This option is performed using
PKUNZIP. The sequence (see *VIEWSORT) and type of
list (*VIEWOPT) determines what information is
displayed.

*EXTRACT Extracts files from the archive (please refer to the
DROPPATH, CVTTYPE, TO, and EXDIR parameters for
controlling the conversion of file names extracted from
the archive).

*NEWER Extracts files in the archive that have a more recent
date and time than the corresponding file on disk. If the
files do not exist on disk, they will be extracted as
newer. All other files will be skipped.

*TEST Tests the integrity of files in the archive by extracting
files without writing the data. As each file is extracted,
a CRC is calculated. At the end of the file the calculated
CRC is compared against the stored CRC in the archive
file header to confirm that the data has not been
corrupted.

ARCHIVE

ARCHIVE(Archive Zip File name with path)

Specifies the path/file name or the library/file name of the PKUNZIP archive to be
processed.

This is a required parameter.

The format depends on whether you will be using the archive file in the library file
system or the IFS.

See parameter TYPARCHFL for file system type information.

Library File System: Format is library/file(member). If member is
omitted, it will use the file name for the member.

124

Integrated File System (IFS): Open system path followed by the archive
file name. The path and file name can up to 256
characters and may contain embedded spaces.

AUTHCHK

Requires SecureZIP

Authenticator Certificates:
 File/Archive *FILE *FILE, *ARCHIVE, *ALL
 LookUp Type *DB *DB, *LDAP, *FILE, *MBRSET...
 Authenticator ______________________________
 Password (If Private) . . . ______________________________
 Required *RQD *RQD, *OPT
 + for more values _

Or

AUTHCHK((*FILE *MBRSET
 'pkwareCertAdmin04.pfx' (password) *RQD))
AUTHCHK((*ALL *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))
AUTHCHK((*ARCHIVE *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))
AUTHCHK((*FILE *DB
 ‘EM=bill.somebody@pkware.com' () *OPT))
AUTHCHK((*FILE *INLIST 'ATEST/INLIST(ENGNEER1)' *N)

This parameter specifies that digital signature authentication processing should be
performed for specific signers. Separate authentication processing may be specified
for either the archive central directory or files by using multiple commands.
Optionally, specific signers may be specified to authenticate against. This parameter
is used in conjunction with the AUTHPOL parameters and its settings.

It is possible that more than one certificate may be returned for a single common
name or email search. As a result, each one will be added to the list of validating
sources.

When no specific certificates are requested, any signatories found in the archive are
validated in accordance with the systems or current AUTHPOL Filters policy settings.

There are five options for AUTHCHK.

Authenticator Type File/Archive (*FILE |*ARCHIVE |*ALL)

This designates the type of authentication that is to be performed. Either ARCHIVE,
FILE or ALL may be specified on each item, but by using ALL or archive with the
*RQD option will result in error since the archive can only have one signatory. If the
lookup type is *INLIST, then this option will be ignored and will pickup from the
records in the inlist file.

• *FILE – The signed files will be authenticated with this authenticator.

• *ARCHIVE - The archive directory will be authenticated with this
authenticator.

 125

• *ALL – Both the signed files and the archive directory will be authenticated
with this authenticator.

Lookup Type (*DB |*FILE |*LDAP |*MBRSET |*INLIST |*SPONSOR)

The lookup type would be the type of authenticator search to be used for the
authenticator string to look up the public key.

• *DB - The authenticator string is defined to search using the certificate
locator database to access the digital certificate.

• *FILE - The authenticator string is defined to read a specific file in a specific
path in the IFS in order to access the digital certificate.

• *LDAP - The recipient string is defined to search using the LDAP server to
access the digital certificate.

• *MBRSET - The authenticator string is defined to read this specific file from
the enterprise public certificate store to access the digital certificate.

• *INLIST- The authenticator string defines a specific file that will contain one
to many AUTHCHK. The TYPLISTFL parameter must specify the file type for
the inlist.

• *SPONSOR - The authenticator string is the authenticating file for a
sponsoring partner. This is only valid for PKWARE PartnerLink Reader and
for *ARCHIVE.

Authenticator (The authenticator string name)

The authenticator string format depends on what was specified for the lookup type.

• If lookup type is *DB, the authenticator string will either be an email address
or the common name of the certificate. This depends on the configuration
setting in PKCFGSEC parameter CERTDB. To override the default selection
mode, you can prefix the string with EM= for email, or CN= for the common
name.

For example:

AUTHCHK((*FILE *DB ‘bill.somebody@pkware.com' () *RQD)
 (*ARCHIVE *DB ‘CN=bill somebody' () *RQD)
 (FILE *DB ‘EM=bill.somebody@pkware.com' (password) *OPT))

• If lookup type is *FILE, the authenticator string is defined to read a specific
file in a specific path of the IFS. This file should be a public key X.509 file or
public key X.509 certificate with a private key file.

For example:

AUTHCHK((*ARCHIVE *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
'/yourpath/PKWARE/Cstores/public’.

• If type is *LDAP, the authenticator string will either be an email address or
the common name of the certificate depending on the search mode
configuration setting in PKCFGSEC parameter LDAP. To override the default

126

selection mode, you can prefix the string with EM= for email address, or CN=
for the common name.

For example:

AUTHCHK ((*ARCHIVE *LDAP ‘bill.somebody@pkware.com' () *RQD)
 (*FILE *LDAP ‘CN=bill somebody' () *OPT)
 (*FILE *LDAP ‘EM=bill.somebody@pkware.com' () *RQD))

• If lookup type is *MBRSET, the authenticator string is defined to read a
specific file from the public certificate store and/or the private certificate store
of the IFS. This file should be a public key X.509 file or public key X.509
certificate with a private key file.

For example:

AUTHCHK((*ALL *MBRSET 'pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path of
the public certificate store defined in the enterprise security configuration
public store (parameter CSPUB). If a password is included, the file is searched
for in the enterprise security configuration private store (parameter CSPRIV).

• If lookup type is *INLIST, the authenticator string defines a full file name of
an input list file that contains records of AUTHCHK shortcut parameters. The
type of file will exist in the QSYS library file system if TYPLISTFL(*DB) is set
and will be a path file name in the IFS if TYPLISTFL(*IFS) is set. The format
of the AUTHCHK shortcut parameters are defined below in the *INLIST usage
section.

• If lookup type is *SPONSOR, the authenticator string is the Sponsor Auth file
stored in the ‘…/Sponsor/Auth’ folder. If the authenticator string is all numeric
the name will automatically be formatted as A0000000.p7, assuming that the
number is the sponsor ID number.

Password

This designates the password that is required for a private key certificate with a
private key (PKCS#12 file). When a value is specified, the target must be an X.509
PKCS#12 public key certificate with the private key.

The PASSWORD value may contain blanks and is delimited by the closing right
parenthesis ")" of the signing command.

Required (*RQD|*OPT|*SAME)

If *RQD, then this authenticator must be found during the selection, and the
certificate must be a valid certificate with a private key, or the ZIP/UNZIP run will
fail.

Usage Notes:

Passwords are masked out in all output displays.

A local certificate store configuration is required to complete the TRUST processing of
this command.

 127

Processing is terminated if none of the requested certificates can be accessed,
regardless of the “R” required flag. If multiple requests are made and at least one
signature is found, processing continues normally.

For inlist that contains a password to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.
Otherwise this would leave a security hole where other users could browse the
password.

*INLIST Usage:

If *INLIST is defined on the AUTHCHK parameter, then the authenticator filed will be
a file that SecureZIP will read to include the authenticator. The format is very similar
to the AUTHCHK parameter described above except that each line authenticator
starts with “{AUTHCHK=” and is terminated by the “}” character, with the semi-
colon “;” as a separator for each entry.

{AUTHCHK=Authenticator Type, Lookup Type; Authenticator; Password; Required}

Authenticator Type See Authenticator Type in AUTHCHK

Lookup Type See Lookup Type in AUTHCHK excluding the INLIST

Authenticator See Authenticator in AUTHCHK.

Password See Password in AUTHCHK.

Required See Required in AUTHCHK, but use RDQ for *RQD and OPT for
*OPT.

Examples:

Sample 1: tstauth_db1.inlist.
{AUTHCHK=FILE;DB;EM=PKTESTDB4@nowhere.com;;RQD}

Sample 2: tstauth_mb2.inlist.
{AUTHCHK=ARCHIVE;MBRSET;pktestdb3.pfx;PKWARE;RQD}

Sample 3: tstauth_mb3.inlist.
{AUTHCHK=ALL;MBRSET;pktestdb3.pfx;PKWARE;RQD}

AUTHPOL

Requires SecureZIP

Authenticate Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...
 Validate Type *ARCHIVE *ARCHIVE, *NONE
 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values

128

Or

AUTHPOL(*WARN *ARCHIVE (*SYSTEM))
AUTHPOL(*WARN *FILE (*NOTTRUSTED))
AUTHPOL(*SYSTEM *ALL (*ALL *NOTEXPIRED))

This parameter defines the processing options and filters that should apply if a
signed file or signed archive is encountered.

Validate Level (*VALIDATE |*WARN |*REQUIRED |*SYSTEM)

The validate level specifies the type of authentication processing that should take
place if a file or archive is encountered. The default is *SYSTEM and, unless it is
modified, SecureZIP will use the enterprise setting from PKCFSEC.

• *VALIDATE – Indicates that, when authentication takes place and a failure
occurs based on the filters, the run will be considered a failure, and the
message issued when the job terminates will indicate one or more errors
during the run.

• *WARN - Indicates that when authentication place and a failure occurs, the
failure is only considered a warning. The messages at the end of the run will
not consider any failed authentications as errors.

• *REQUIRED – Indicates that authentication must take place and that, if any
failure occurs based on the filters, the run will be considered a failure, and the
message issued when the job terminates will indicate one or more errors
occurred during the run. If the archive or file has not been signed, an error
will be issued.

• *SYSTEM – Indicates the authentication processing that is set in the
environmental setting will be used.

Validate Type (*ALL |*ARCHIVE |*FILE |*NONE)

The validate type specifies whether the file, archive, all or no authentication will take
place if a file or archive has been signed. The default is *NONE, and anything other
than *NONE requires the Enhanced Encryption module.

• *ALL - Indicates that authentication will take place for both files and/or the
archive has been signed.

• *ARCHIVE - Indicates that only a signed archive will be authenticated.

• *FILE - Indicates that only the signed files will authenticated.

• *NONE - Indicates no authentication will take place even though a file or
archive has been signed.

Filters (*SYSTEM |*ALL |*NONE |*TAMPER |*TRUSTED |*EXPIRED |*REVOKED
|*NOTAMPER |*NOTTRUSTED |*NOTEXPIRED |*NOTREVOKED)

The authentication filter policies settings are defined in the enterprise security file
supplied by the SecureZIP administrator (See PKCFGSEC). These global policy
settings can be revised with sub-parameter values. The variables are cumulative
from the global setting.

• *SYSTEM – All filter policies are from the global settings.

 129

• *ALL - This sub-parameter activates all levels of authentication. If followed
by negating sub-levels, then all but those negating levels are activated. For
example: *ALL NOTEXPIRED means that expired certificates will not cause an
authentication error, but TRUST and TAMPERCHECK must both be satisfied.

• *NONE – Will negate all the policies.

• *TAMPER – This sub-parameter signifies that a verification of the data
stream should be done against the digital signature.

• *TRUSTED – This sub-parameter signifies that the entire certificate authority
chain must be validated. This includes locating the root (self-signed)
certificate on the local system.

• *EXPIRED – This sub-parameter signifies that certificate date range
validation should be performed on the certificates (including the certificate
authority chain). Although the term “expired” is used, a certificate that has
not yet reached its valid data range specification will fail.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer consider
that certificate to be valid. The authentication operation will fail if any of the
certificates in the trust chain are found to have been revoked, or if the
revocation status could not be determined

• *NOTAMPER – Negates the *TAMPER filter.

• *NOTTRUSTED – Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED – Negates the *REVOKED filter.

CRTLIST

CRTLIST(*NONE| path/filename)

Specifies that PKUNZIP will create an output file with a list of entries that will be
compressed based upon the selection criteria in the FILES and EXCLUDE parameters.
This parameter only works with the TYPE set to *VIEW.

See parameter TYPLISTFL for file system type information.

*NONE No list file will be created.

path/filename Enter the file path and name of the file to create. The
layout depends on which file system you want to create
the file in.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

130

CVTDATA

CVTDATA(External Program Conversion Extended Data)

Specifies the extended data that is passed to the external program CVTNAME. When
CVTFLAG is not *NONE, the contents of the parameter are passed to provide
extended flexibility in controlling how the iSeries names are stored in the archive.
The System Administrator’s Guide contains more information on CVTNAME.

External Program Conversion Extended Data
Specify up to 255 bytes of unedited data which is passed
to the exit program CVTNAME to assist in controlling the
program logic.

CVTFLAG

CVTFLAG(*NONE|Conversion Flags)

Specifies the flags passed to the external program CVTNAME. These are used to
control how the iSeries names are stored in the archive. The System Administrator’s
Guide contains more information on CVTNAME.

The allowable values are:

*NONE Conversion exit is not active.

Conversion Flags Specify a 5-byte flag that is passed to the exit program
CVTNAME to control the program logic. If the name
passed back is blank, then conversion is referred back to
the setting of the CVTTYPE parameter.

CVTTYPE

CVTTYPE(*NONE|*DROP|*SUFFIX)

Specifies how the files names in the archive will be converted to a file name in the
iSeries library, file, and Member format. In the iSeries QSYS library system, the
length of each name in the QSYS format can only be up to 10 characters. In other
platforms, the file name formats (including MS/DOS) may have an extension with a
period (.) separator which is not valid in the iSeries DB name. The file names in
some cases may even exceed the 10-character limit. This parameter gives control
over the file name conversion process.

Note: The conversion of file names may result in duplicate file names on the iSeries
system. In this case, the rules for overwriting the files are in effect for duplicates
(see the OVERWRITE option). If this is the case, using specific file inclusion and
exclusion with multiple runs may be required to extract all of the files.

The allowable values are:

*SUFFIX This forces the removal of the period(.) extension and
stores name truncating characters over 10 characters.

 131

*NAMEFILE The extensions are considered to be file names or
treated as a slash (/).

*DROP Drops all characters after the period(.) extension
separator, and stores the name truncating characters
over 10.

DFTDBRECLN

DFTDBRECLN (132|Record Length)

Specifies the record length to use when creating a file in the QSYS library system. If
TYPFL2ZP parameter is *DB, and the file being extracted does not exist nor does
extended attribute for the record length exist, the file will be created with the record
length specified in this parameter.

The allowable values are:

132 Default is record length of 132 to match previous
versions.

Record Length A decimal number from 50 to 32000.

DROPPATH

DROPPATH(*NONE|{*ALL| *LIB)

Used to drop the path(s) or libraries of files that are stored in the archives, therefore
only using the file names in the archive. This is used along with the keyword EXDIR
where the default paths are defined when dropping the paths on files in the archive.

For example, if the file in the archive is “path1/path2/filename” (IFS) or
“library/file/member” (QSYS), and if DROPPATH is *ALL, the file being extracted
would be “filename” or “member”. If *LIB was used, the file being extracted would
be path1/filename” or “file/member”.

See “Example 1 - PKUNZIP Files to a New or Different Library” in Appendix B for an
example of using EXDIR and DROPPATH together.

The allowable values are:

*NONE Do not remove paths and/or libraries in the archive.

*ALL Remove all paths that are stored in the archive, leaving
only an IFS file name or member name.

*LIB Remove only the first path (which in most cases could
be the library).

132

ENTPREC

Requires SecureZIP

Encryption Recipients :
 LookUp Type *DB *DB, *FILE...
 Recipient ______________________________________

 Password . . . ______________________________________
 Required *RQD *RQD, *OPT
 + for more values _

Or

ENTPREC((*MBRSET 'pkwareCertAdmin04.p12' (pw) *RQD))
ENTPREC((*FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.p12' (pw) *RQD))
ENTPREC((*FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx' (‘mypassword’)
*RQD))
ENTPREC((*DB
 ‘EM=bill.Somebody@pkware.com' (pw) *RQD))
ENTPREC((*LDAP
 ‘EM=bill.Somebody@pkware.com' (pw) *RQD))
ENTPREC((*INLIST 'ATEST/INLIST(ENGNEER1)' *N)

The decryption recipient parameter defines one to many recipients which is to be
included for UNZIP process. This parameter allows 1-4 types of certificate searches
to take place along with providing the ability for an include file that may contain the
recipients.

The specification of this recipient ENTPREC parameter triggers decryption to take
place during UNZIP processing utilizing the found recipients along with passwords
that were entered to access the private certificates.

There are four options.

Lookup Type (*NONE |*DB |*FILE |*MBRSET |*SAME)

The Lookup type is the type of recipient search to be used for the recipient string.

• *DB - The Recipient string is defined to search using the Certificate Locator
Database to access the digital certificate.

• *FILE - The recipient string is defined to read a specific file in a specific path
in the IFS in order to access the digital certificate.

• *MBRSET - The recipient string is defined to read this specific file from the
enterprise public certificate store to access the digital certificate.

• *INLIST- The recipient string defines a specific file that will contain one to
many recipients.

Recipient (The recipient string name)

The recipient string format depends on what was specified for the Lookup type.

 133

• If type is *DB - The recipient string will either be an email address or the
common name of the certificate. This depends on the configuration setting in
PKCFGSEC parameter CERTDB. To override the default selection mode, you
can prefix the string with EM= for email or CN= for the common name.

For example:

ENTPREC((*DB ‘bill.Somebody@pkware.com' (pw) *RQD)
 (*DB ‘CN=bill Somebody' (pw) *RQD)
 (*DB ‘EM=bill.Somebody@pkware.com' (pw) *RQD))

• If type is *FILE - The recipient string is defined to read a specific file in a
specific path of the IFS. This file should be Public-key X.509 file or private-key
X.509 certificate file.

For example:

ENTPREC((*FILE '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.p12'
(pw) *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
'/yourpath/PKWARE/Cstores/private.

• If type is *MBRSET - The recipient string is defined to read a specific file from
private certificate store of the IFS. This file should be a private-key X.509
certificate file.

For example:

ENTPREC((*MBRSET 'pkwareCertAdmin04.p12' (pw) *RQD))

The digital certificate file ‘pkwareCertAdmin04.p12’ will be in the full path of
the private certificate store defined in the enterprise security configuration
private store(parameter CSPRIV).

• If type is *INLIST- The recipient string defines a full file name of an input list
file that contains records of ENTPREC shortcut parameters. The type of file
will in the QSYS library file system if TYPLISTFL(*DB) is set and will be a path
file name in the IFS if TYPLISTFL(*IFS) is set. The format of the ENTPREC
shortcut parameters are define below in the *INLIST Usage section.

Password

The password is required to access private certificates.

Required (*RQD|*OPT|*SAME)

If *RQD, then this recipient MUST be found during the selection and the certificate
MUST be valid or the ZIP/UNZIP run will fail.

Usage Notes:

The UNZIP process requires a X.509 private-key format certificate file to decrypt files
and thus requires an inputted password.

For an inlist that contains a password to open a private-key certificate, make sure
that the security is sufficient to allow read access only to the owner of the certificate.
Otherwise other users can browse the password.

134

*INLIST Usage:

If *INLIST is defined on the ENTPREC parameter, then the recipient filed will be a file
that SecureZIP will read to include recipient. The format is very similar to the
ENTPREC parameter describe above except each line recipient starts with
“{RECIPIENT=” and is terminated by the “}” character with the semi-colon “;” as a
separator for each entry.

{RECIPIENT=Lookup Type; Recipient; Password; Required}

Lookup Type See Lookup Type in ENTREC excluding the INLIST

Recipient See Recipient in ENTREC.

Password See Password in ENTREC.

Required See Required in ENTREC, but use RDQ for *RQD and
OPT for *OPT.

Examples:

{RECIPIENT=MBRSE;EM; mypassword;RQD}

Sample 1: tstpriv_db4.inlist.
{RECIPIENT=DB;EM=PKTESTDB4@nowhere.com;PKWARE;RQD}

Sample 2: tstpriv_mb3.inlist.
{RECIPIENT=MBRSET;pktestdb3.pfx;PKWARE;RQD}

Sample 3: tstpubl.inlist.

{RECIPIENT=MBRSET;pktestdb3.p12;pw;RQD}
{RECIPIENT=MBRSET;pktestdb4.p12;pw;OPT}

Sample 4: tstpubl2.inlist.

{RECIPIENT=DB;EM=PKTESTDB3@nowhere.com;pw;RQD}
{RECIPIENT=DB;CN=PKWARE Test4;pw;OPT}

EXCLFILE

EXCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be excluded. This can
be used with or without the EXCLUDE parameter. See parameter TYPLISTFL for file
system type information.

*NONE No list file will be processed.

 135

path/filename Enter the file path and the name of the file to process.
The layout depends on which file system you want the
file created.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

EXCLUDE

EXCLUDE(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be excluded from the
PKUNZIP run. One or more names can be specified. Each name should be in the
OS/400 file system format, such as, QSYS is library/file(member) and IFS is
directory/file, and can include wildcards “*” and “?”.

Note: If TYPE(*VIEW) is being used, then the format for these names is the
MS/DOS format.

The PKUNZIP program can also exclude file specifications by using the list file
parameter EXCLFILE with a list of names to exclude.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification 1'

'file_specification 2'...

'file_specification n'

EXDIR

EXDIR(*CURRENT| path)

If there are no paths stored in the archive file name, EXDIR specifies the default path
to store the files being extracted. The path definition depends on the “file system
type” in parameter TYPFL2ZP. This will happen when the files come from a PC or if
the files were compressed with PKZIPi using the STOREPATH(*NO) parameter.

If the “file system type” is IFS, EXDIR will be the paths defined for your iSeries open
systems and the default path will be the current directory settings (issue the
command DSPCURDIR to see the current directory settings).

If the “file system type” is the library file system, the path will be either a library or a
library/filename. The default is *CURLIB/UNZIPPED and if the file UNZIPPED does not
exist, then it is created with a record length of 132. It is best to create a default file
with the record length of your choice, because if a text file is extracted with a record
length greater than the file’s record length, the record will be truncated to fit the
record length.

136

If EXDIR is coded with keyword MBR and the file system is the QSYS library system,
PKUNZIP will use the member name for the file name. For example:
EXDIR('newlib/MBR') and DROPPATH(*ALL) parameters are coded and the file name
in archive is "mylib/myfile/mymbr", the file will be extract to the file
"newlib/mymbr(mymbr)". This is only valid for TYPFL2ZP(*DB) files.

EXDIR is also used when the archive file is a GZIP archive and there is no file name
stored in the archive. In this case, EXDIR becomes a required field.

*CURRENT Current directory for IFS or *CURLIB/UNZIPPED for the
QSYS library file system.

path Enter the path or path/path/.. in which to extract. The
layout depends on the file system in which the file is to
be created.

Library File System:
The format is "library/file".

Integrated File System (IFS):
The format is "path1/path2/../pathn".

FILES

FILES(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be selected in the PKUNZIP
process. One or more names can be specified. Each name should be in the OS/400
file system format, such as, QSYS is library/file(member), and IFS is directory/file,
and can include wildcard “*” and “?”.

Note: If TYPE(*VIEW) is being used then the format for these names is the
MS/DOS format.

The PKUNZIP program can also have file specification selections to include by using
the list file parameter INCLFILE with a list of names to select.

Files may also be excluded. See the EXCLUDE parameter.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification 1'

'file_specification 2'

'file_specification n'

FILETYPE

FILETYPE(*TEXT|*BINARY|*EBCDIC|*DETECT)

Specifies whether the files selected are treated as text or binary data. For text files
added to an archive, trailing spaces in each line are removed, the text is converted
to ASCII (based on the translation tables) by default, and a carriage return and line

 137

feed (CR/LF) are added to each line before the data is compressed into the archive.
Binary files are not converted at all.

There are attributes which indicate how a file was compressed (TEXT, BINARY, or a
SAVF) in the archive headers. The default setting (and recommended) is *DETECT,
which analyzes the header to determine the file type. To view the attribute settings
of a file, use the VIEWOPT(*DETECT).

If the file is a SAVF, then it will be processed as BINARY, regardless of any option
that you select.

*DETECT Uses the attribute setting that is stored in the archive to
determine the file type.

*TEXT Specifies that the files selected are text files and
translation will be performed using the translate tables
specified in the TRAN option.

*BINARY Specifies that the files selected are binary files and no
translation should be performed.

*EBCDIC Specifies that the files selected are text files and leaves
it in EBCDIC without performing any translation. This is
good only if the files are to be used on an iSeries or
IBM-type mainframe. If they are unzipped to a PC file,
then a translation from EBCDIC to ASCII is required.

FTRAN

FTRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use in translating "file names, comments, and
password" from the iSeries EBCDIC character set to the character set used in the
archive file (normally ASCII character set). A default internal table is predefined. See
Appendix D for additional information.

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the internal tables that were the
default in V5 PKZIP.

membername Specify the member name in the file PKZTABLES that
will be parsed and used to translate "file names and
comments" files to the archive character set. The
member should have the exact format of member
ISO9959_1 in file PKZTABLES. See Appendix D for
information on defining translation tables.

138

IFSCDEPAGE

IFSCDEPAGE(*NO | Code-Page)

If this option is set to *NO, PKUNZIP will write IFS files with the code page that is
registered for the file, or will use the default job code page if no code page is set in
the file attributes. Otherwise, PKUNZIP will write IFS files with the specified code
page.

Note: If files are to be extracted to a case sensitive file system, the case sensitive
format of file names must be used before they can be selected.

The allowable values are:

*NO The PKUNZIP program will read IFS files with the code
page registered for the file. This is the default.

Code-Page The PKUNZIP program will write the IFS files with the
specified code page value.

INCLFILE

INCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be selected for
including. This can be used with or without the FILES parameter. See parameter
TYPLISTFL for file system type information.

*NONE No include list file will be processed. This is the default.

path/filename Enter the file path and name of the file to process. The
layout depends on which file system you want the file
created.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

MSGTYPE

MSGTYPE(*PRINT|*SEND|*BOTH)

Specifies where the display of messages and information should be shown. The
PKUNZIP program can send messages which appear on the log, and also may print
to stdout and stderr. If working interactively, stdout and stderr will display upon the
dynamic screen. If submitted via batch, you can override them to print in an OUTQ,
or you can build a CL and save them to an outfile.

*SEND Send the information to the log with send message
commands.

*PRINT Send the information to stdout and stderr.

 139

*BOTH Send the information to the log with send message
commands and also to stdout and stderr.

OVERWRITE

OVERWRITE(*NO|*YES|*PROMPT}

Controls how PKUNZIP reacts to files that are being extracted and the file already
exists. To help prevent accidental overwriting of files, the default is *PROMPT.

The allowable values are:

*YES Always overwrite files. If the file exists, the file will be
overwritten with no message or prompting.

*NO Never overwrite files. If the file already exists then the
archive file will be skipped and not extracted. This is the
default.

*PROMPT When a file being extracted already exists, PKUNZIP will
issue the warning message AQZ0262 and prompt the
user for the required action.

PASSWORD

PASSWORD(Archive Password)

Specifies a password to be used for files that were added to the archive with a
password. This password may be up to 64 characters in length and is case-sensitive.
All files selected for archiving will be checked for encryption using the specified
password. Files in the archive may have different passwords. If so, PKUNZIP must be
run once for each password.

Since the password in entered in EBCDIC, the translation table referenced in the
FTRAN parameter is used to translate it to ASCII. Care should be take when using
the FTRAN override when using a password. To use password-protected files, the
same FTRAN override option is required.

RSTIPSRA

RSTIPSRA (For iPSRA files enter a restore command)

If an iPSRA file is to be restored, RSTIPSRA should contain the appropriate restore
command for the objects. To view the save command that was used to create the
iPSRA file, do a TYPE(*VIEW) VIEWOPT(*ALL). This parameter should contain the
restore command with no surrounding quotes. When the cursor is position to a
restore command entered in the RSTIPSRA parameter, it can be prompted. If the
restore command cannot pass the command pre-processor, an error will show for the
restore command. Valid restore commands are: RST, RSTLIB, RSTOBJ, and RSTDLO.

140

SFQUEUE

SFQUEUE (*DFT |Name)

Specifies the output queue that will be used as an override when extracting spool
files. If no OUTQ library is specified, it will default to *LIBL.

The allowable values are:

*DFT The output queue that are in the spool file attributes will
be used when extracting files.

OUTQ The specific OUTQ that will used when the spool file is
extracted. It must be a valid output queue.

OUTQ Library The library where the OUTQ resides.

SPLUSRID

SPLUSRID (*DFT| User ID)

The user ID to use when extracting a spool file. If *DFT is used the user ID belonging
to the spool file will be used when building the spool file.

The allowable values are:

*DFT Use user ID associated with spool file in the archive.

User ID Specify a valid user ID that the new extracted spool file
will belong to. It must be a valid user ID on the
OS/400.

Note on extracting Spool Files: To create or extract a spool file with PKUNZIP,
the user must have *USE authority to the API QSPCRTSP. The normal setting for the
API QSPCRTSP is authority PUBLIC(*EXCLUDE). The API authority is set this way so
that system administrators can control the use of this API. This API has security
implications because you can create a spooled file from the data of another spooled
file. To allow user to extract spool files change the API authority on a need basis.

TRAN

TRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use with translating “data” from the iSeries EBCDIC
character set to the character set used in the archive file (normally the ASCII
character set). A default internal table is predefined (see Appendix D).

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

 141

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the internal tables that were the
default in V5 PKZIP.

Member Name Specifies the member name in the file PKZTABLES that
will be parsed and used to translate data files to the
archive character set. The member should have the
exact format of member ISO9959_1 in file PKZTABLES
(see Appendix D for information on defining translation
tables).

TYPARCHFL

TYPARCHFL(*DB|*IFS)

Specifies the type of file system in which the archive file will exist (see parameters
ARCHIVE and TMPPATH for additional information).

*DB Archive files are to be in the QSYS library file system.

*IFS Archive files are to be in the integrated files system
(IFS).

TYPFL2ZP

TYPFL2ZP(*DB|*IFS)

Specifies the type of file system that contains the files to be unzipped. Reflected for
files in parameters FILES and EXCLUDE.

*DB Files to be unzipped are in the QSYS library file system.

*IFS Files to be unzipped are in the IFS (integrated files
system).

TYPLISTFL

TYPLISTFL(*DB|*IFS)

Specifies the “type of files system” that will be used for the input list file and/or the
output list file of selected items.

To use input list files, see parameters INCLFILE (file section list) or EXCLFILE (file
exclude list). To create an output list file of the selected files items, see parameter
CRTLIST.

*DB Files are in the QSYS library file system.

*IFS Files are in the IFS(integrated file system).

142

VERBOSE

VERBOSE(*NORMAL|*NONE| *ALL|*MAX)

Specifies how the detail will be displayed during a PKUNZIP run.

The allowable values are:

*NORMAL Displays most informative messages to show PKUNZIP is
processing.

*NONE Displays only major exception information.

*ALL Displays all messages.

*MAX Used only for debugging purposes.

VIEWOPT

VIEWOPT(*NORMAL|*DETAIL|*BRIEF|*COMMENT|*FNE|*FNEALL)

Specifies the level of information produced when viewing the archive.

The allowable values are:

*NORMAL Shows the original file length, compression method,
compressed size, compression ratio, file date and time,
32-bit CRC value, and file name for each file in the
archive.

*DETAIL Shows very detailed technical information about each
file in the archive. It will also show all extended
attribute (extra data fields) information that was stored
in the archive produced by PKZIP (only if the PKZIP
keywords EXTRAFLD(*YES) or DBSERVICE(*YES) were
specified).

*BRIEF Shows the original file length, file date and time, and file
name for each file in the archive.

*COMMENT Same as the *NORMAL option, but also shows any file
comments stored on a separate line after its details.

*FNE Shows the archive’s file name encryption properties.

*FNEALL Shows the archive’s file name encryption detail
properties including the allowable recipients.

VIEWSORT

VIEWSORT(*ASIS|*DATE|*DATER|*NAME|*NAMER|*PERCENT|*PERCENTR| *SIZE|*SIZER))

Specifies the sequence of the viewing display.

The allowable values are:

 143

*ASIS List the files in the sequence in which they are stored in
the archive, such as, as is.

*DATE List the files in ascending order of the file’s date & time
as stored in the archive.

*DATER List the files in descending order of the file’s date & time
as stored in the archive.

*NAME List the files in ascending order of the file name as
stored in the archive.

*NAMER List the files in descending order of the file name as
stored in the archive.

*PERCENT List the files in ascending order of the compression
percentage as stored in the archive.

*PERCENTR List the files in descending order of the compression
percentage as stored in the archive.

*SIZE List the files in ascending order of the uncompressed file
size as stored in the archive.

*SIZER List the files in descending order of the uncompressed
file size as stored in the archive.

144

9 PKQRYCDB “Query Cert Database”
Command

PKQRYCDB Requires SecureZIP

PKQRYCDB Command Summary with Parameter Keyword
Format
PKQRYCDB is a utility command to query the certificate locator database files or a
certificate file in the IFS.

Keywords are demarcated by spaces. In many cases there are multiple entries for a
parameter where each entry is again demarcated by spaces. For more information
about the command process reference the IBM home page for your version of the
operating system.

 SecureZIP Query Cert Db 8.2 (PKQRYCDB)
Type choices, press Enter.
Processing Type *SUMMARY *SUMMARY, *LEVEL1, *ALL
 File Type *DB *FILE, *DB, *P7B
 Certificate Type *ALL *PUBLIC, *PRIVATE, *ALL
 Selection Name __

 Cert Password
 Logging Level *LOG *NOLOG, *LOG, *MAXLOG

PKQRYCDB Command Keyword Details

RUNTYPE - Processing Type

RUNTYPE (*SUMMARY|*LEVEL1 |*SELECT|*ALL)

The processing type determines the amount of details that PKQRYCDB will display.
The possible type codes are:

*SUMMARY - Shows only one line per selected item and is based on the
selection type (CN= or EM=)

 145

*LEVEL1 - Displays the common name, email address and the certificate path
and file name

*SELECT - Displays a display file of certificates based on the selection type.
The items can be browsed or selected for a detail display of the certificates. If
the certificate dates have expired, the dates will be highlighted.

*ALL - Displays a complete set of details for each certificate; could be 20-40
lines per file

FTYPE - File Type

FTYPE (*FILE| *DB | *P7B)

The file type determines the type of path/file name in the parameter FNAME.

If *DB is selected, PKQRYCDB will search the database based on the contents
of the FNAME. For example, CN=Bill* will search for all certificates with a
common name that starts with Bill regardless of upper case or lower case.

If *FILE is selected, then FNAME should be a very specific certificate file (full
path included).

*P7B will read a specific file that should be in a P7B format. It will then do a
detailed display for the contents of the P7B certificate store.

CTYPE - Certificate Type

CTYPE (*ALL| *PUBLIC | *PRIVATE)

CTYPE specifies the type of certificates, private or public, that will be processed in
this run.

*ALL will process both public and private certificates.

*PUBLIC specifies that only public certificates should be processed. No
password should be supplied.

*PRIVATE indicates that only private-key certificates should be processed and
requires that a password be entered.

FNAME - File Name

FNAME (Path/File name)

If FTYPE is *DB, the FNAME contents will be the selection criteria for the certificate
locator database. It should contain the prefix of the field to select, such as CN= for
common name and EM= for email address. Selection is not case-sensitive. If the
selection ends in an asterisk (*), a generic selection is made for all certificates
starting with the selection criteria.

If FTYPE is *FILE, the contents of FNAME contains the IFS file that will used to query
the certificate contents. Specify the full path and file name of the specific certificate
file.

146

PASSWORD - Certificate Password

PASSWORD (Certificate Private Key Password)

Processing the private key certificate with RUNTYPE(*ALL) requires the password
used when the certificate was exported to open and gather the contents. The
password is used only to open the certificate to gather the database data; it is not
stored or saved. The certificate is not altered in any way.

LOGLVL - Logging Level

LOGLVL (*LOG|*NOLOG |*MAXLOG)

Specifies the level of logging (printing/viewing) used during a PKQRYCDB run.
LOGLVL(*NOLOG) shows only a minimal amount of information. LOGLVL(*MAXLOG)
shows more details, with some detail useful only for problem determination.

Sample Displays

Request RUNTYPE(*SUMMARY) to generate and display a report containing additional
information about the certificate.

 PKQRYCDB RUNTYPE(*SUMMARY) FNAME('cn=will*')

PKQRYCDB QUERY SecureZIP Cert DataBase starting------2004/11/16 07:37:28
PKQRYCDB Start Search Summary for <cn=will*>
 Public Key CN=William S. Somebody
 Public Key CN=William Somebody
 Public Key CN=William Somebody
Private Key CN=William Somebody
 Public Key CN=William Somebody

PKQRYCDB Run Totals:
 Total Records In Error =0
 Total Records Processed =5
PKQRYCDB Scan ending------

Request RUNTYPE(*Level1) to generate and display a report containing additional
information about the certificate.

 PKQRYCDB RUNTYPE(*LEVEL1) FNAME('cn=will*')

PKQRYCDB QUERY SecureZIP Cert DataBase starting------2004/11/16 07:39:34
PKQRYCDB Start Search Level 1 for <cn=will*>
 Public Key CN=William S. Somebody
 EM=sombody@worldnet.att.net
 FN=William S. Somebody
 File </yourpath/PKWARE/Cstores/public/williamsSomebody.cer>
 Public Key CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/public/billSomebody03.cer>
 Public Key CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/public/bill_Somebody2003.cer>

 147

Private Key CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/private/billSomebody03.pfx>
 Public Key CN=William Somebody
 EM=bSomebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/public/billSomebody.cer>

 PKQRYCDB Run Totals:
 Total Records In Error =0
 Total Records Processed =5
 PKQRYCDB Scan ending------

Request RUNTYPE(*ALL) to generate and display a report containing additional
information about the certificate.

 PKQRYCDB RUNTYPE(*ALL) FTYPE(*FILE)
 FNAME('/yourpath/PKWARE/Cstores/public/billSomebody03.cer')

PKQRYCDB QUERY SecureZIP Cert DataBase starting------2004/11/16 07:43:50

 Public Key Found File </yourpath/PKWARE/Cstores/public/billSomebody03.cer>
 CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody

--- Certificate ---
William Somebody
Subject:
 O=VeriSign, Inc.
 OU=VeriSign Trust Network
 OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
 OU=Persona Not Validated
 OU=Digital ID Class 1 - Microsoft Full Service
 CN=William Somebody
 E=bill.Somebody@pkware.com
Issuer:
 O=VeriSign, Inc.
 OU=VeriSign Trust Network
 OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98
 CN=VeriSign Class 1 CA Individual Subscriber-Persona Not Validated
SerialNumber:
 3F55 2A91 2B5A 9F9B 46E0 D8A0 96DB DDAB
NotBefore:
 Mon Jul 21 19:00:00 2003
NotAfter:
 Wed Jul 21 18:59:59 2004
SHA-1 Hash of Certificate:
 D5 CE FF A5 72 EF B6 53 EA 75 F7 CA 2E 01 85 7B
 65 7C B8 E7
Public Key Hash:
 6E 16 CF EF FA A0 99 25 2B 79 DE E6 23 C7 D7 42
 80 82 F3 E4
End Entity

PKQRYCDB Run Totals:
 Total Records In Error =0
 Total Records Processed =1
PKQRYCDB Scan ending------

148

The following table explains the fields of the certificate details in the display.

Heading Description

Subject Information about the entity to whom the certificate was
issued

Issuer Information about the entity that issued the certificate

SerialNumber Serial number of the certificate

NotBefore/NotAfter Date range for which the certificate is valid

SHA-1 Hash of Certificate The SHA-1 algorithm hash, or “thumbprint,” of the
certificate

Public Key Hash The hash, or “thumbprint,” of the public key

Key Usage Key usage flags that determine how the certificate was
intended to be used

The public key hash value is the prime key used in the local certificate store index.

The Issuer fields are composed of several x.509 subfields. The exact set varies. The
following table describes some of the most commonly used.

Code Description

O Organization

OU Organizational Unit

CN Common Name

E or EM Email address

C Country

ST State or Province

L Locality or City

The common name (CN) and email (E) fields can be searched to identify recipients.

Request RUNTYPE(*SELECT) to generate a browse screen containing additional
information about the certificate. This provides the ability to fold and unfold for more
information. To display details as shown above, enter a 5.

 PKQRYCDB RUNTYPE(*SELECT) FNAME('cn=P*')

Folded

 4/06/05 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
_ CN=PKWARE Test1
_ CN=PKWARE Test3
_ CN=PKWARE Test3
_ CN=PKWARE Test4
_ CN=PKWARE Test4
_ CN=PKWARE Test9

F3-Exit F9-Fold/UnFold F12-Return

 149

F9 to Unfold

 4/06/05 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
 CN=PKWARE Test1
 Public 04/14/2004-04/13/2024 NOTTRUSTED NOTREVOKED Code= CES
 EM=PKTESTDB1@nowhere.com
 File=/yourpath/testroot/CStore/Public/pktestdb1.cer

 CN=PKWARE Test3
 Public 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB3@nowhere.com
 File=/yourpath/testroot/CStore/Public/pktestdb3.crt

 +
 F3-Exit F9-Fold/UnFold F12-Return

 4/06/05 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
 CN=PKWARE Test3
 Private 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB3@nowhere.com
 File=/yourpath/testroot/CStore/Private/pktestdb3.p12

 CN=PKWARE Test4
 Public 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB4@nowhere.com
 File=/yourpath/testroot/CStore/Public/pktestdb4.crt

 +

 F3-Exit F9-Fold/UnFold F12-Return

 4/06/05 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
 CN=PKWARE Test4
 Private 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB4@nowhere.com
 File=/yourpath/testroot/CStore/Private/pktestdb4.p12

 CN=PKWARE Test9
 Private 02/08/2005-12/14/2024 TRUSTED REVOKED Code= E
 EM=PKTESTDB9@nowhere.com
 File=/yourpath/testroot/CStore/Private/pktestdb9.pfx

 F3-Exit F9-Fold/UnFold F12-Return

150

10 Processing with GZIP

Introduction to GZIP (GNU zip)
GZIP (GNU zip) is a compression utility designed to use a different standard for
handling compressed data in an archive. Its main advantages over other
compression utilities are much better compression and freedom from patented
algorithms. It has been adopted by the GNU project and is now relatively popular on
the Internet. GZIP was written by Jean-Loup Gailly (jloup@gzip.org) and Mark Adler
(the decompression code).

GZIP (GNU zip) utility program (available on a number of platforms including MVS,
UNIX, and PC) can be used like PKZIPi to compress and extract data. PKZIPi in
producing GZIP archives implements two GZIP standard specifications:

RFC 1952: GZIP file format specification Version 4.3, which documents the GZIP
specifications and the format of a GZIP archive file.

RFC 1951: DEFLATE Compressed Data Format Specification Version 1.3, which
documents the compression algorithm used by GZIP processing.

The RFC is a process to promote specifications and standards throughout the
Internet community and can be found at www.faqs.org/rfcs. Both RFC 1952 and RFC
1951 specifications are platform-independent; therefore, data that was compressed
on one platform, for example, UNIX, may be decompressed on another platform, for
example, iSeries or MVS.

The one significant advantage of GZIP archive files over ZIP archive files is the ability
to handle larger (greater than 4 GB) file sizes. The standard ZIP archive format
restricts processing to uncompressed files that are less than 4 GB and cannot create
an archive containing multiple files that would meet or exceed the 4 GB limit. These
restrictions are due to the size of the specified fields (4 byte fields) that contain the
file size information within the archive. The GZIP archive format (see RFC 1952) can
process files of any size. This format does not maintain a 'directory’ of information
for individual files and allows sizes to 'wrap' at 4 GB, so it does not suffer a size
restriction.

http://www.faqs.org/rfcs

 151

GZIP Archive Files Used By PKZIP/SecureZIP for iSeries
The term GZIP archive file is used to describe the file that holds data that has been
compressed by one of the GZIP programs and meets the specifications of RFC 1952.
At the end of the GZIP archive is a trailer that contains the file’s compressed size,
uncompressed size, and a CRC value for the file (which is used to verify that the
decompressed data is identical to the data that was originally compressed).

A GZIP archive file can be transferred from one platform to another and can be
decompressed by a GZIP-compatible application which is running on that platform.
The internal format of a GZIP archive is identical, no matter what platform
compressed the file.

PKZIPi (by default) creates new archives as members of PF-DTA files with 132-byte
records. The archive file is given a text field of 'file created by PKZIP iSeries.' The
archive member is given a text field of 'Member created by PKZIP iSeries.' If you
wish to create your own archive (perhaps because a larger record size would be
convenient), then you can do so, but consider the following:

When creating the file, do not create any members in it.

After creating the file, change the MAXMBRS parameter for the file from 1 to
*NOMAX.

A GZIP archive holds files internally in either text or binary format, both of which are
compatible with other platforms supported by GZIP. Because information held in a
GZIP archive is defaulted for binary processing, PKZIPi uses the parameter
FILETYPE for text or binary processing. When transporting archives between
machines that use different character sets for text, for example, EBCDIC and ASCII,
the binary format may not be appropriate. Specifying that the file is to be
compressed as FILETYPE(*TEXT) will allow PKZIPi to perform EBCDIC-to-ASCII
conversion, as required. Specifying FILETYPE(*TEXT) may also be useful when
PKUNZIP is used on the iSeries to extract data that has been compressed on an
ASCII system.

A GZIP archive is similar to a ZIP archive but normally only contains one compressed
file or member. GZIP archives, like ZIP archives, use the Lempel-Ziv algorithm
(inflate) to compress and decompress data. Unlike a ZIP archive, GZIP archives do
not hold a lot of information in various information blocks throughout the archive.
Instead, they contain only one information block at the beginning of the archive and
locates size information at the end of the archive. Some GZIP text data, for example,
file name and comments, use the ISO 8859-1 (LATIN-1) character set and therefore
will be converted to and from LATIN-1 as required. When a GZIP archive is created,
an information block is placed in the archive before the compressed version of the
file. This information block includes the following information about the file:

• The compression method used on the file.

• The date and time of the last update to the file.

• A flag to indicate optional extended data exists (these fields are usually
operating system-dependant and may be ignored if identification code is
unrecognized).

• The name of the file that was compressed.

• An archive text comment.

152

• Compressed data followed by the GZIP trailer at the end of the archive. The
trailer includes a CRC value and the original size of the uncompressed file.

Cross Platform Compatibility
Since GZIP archive files adhere to RFC 1952, the files are compatible across all GZIP-
supported platforms. If executable files and other platform-dependent objects are
compressed on one platform and then decompressed on another, it is unlikely that
they will work on the new platform. The same can be said about EBCDIC vs. ASCII.
Because the extra information is platform dependent, most likely it will be ignored by
another platform.

A major consideration for cross platform processing is when building the archive in
the QSYS library file system you may end up with pad bytes at the end of the archive
due to files have record lengths and the end of the archive will be padded to the
record length. Some GZIP products cannot handle the extra pad bytes at the end of
the archive. In this case, the archive should be stored in the IFS where the archive
will be a true stream file with no pad bytes at the end of the archive.

GZIP Restrictions
Filename encryption can not be used with GZIP.

Special Note on GZIP Passwords
GZIP standard processing (RFC 1952) does not normally allow a password to be
placed on a GZIP archive. PKZIPi does allow this feature, but its use may cause
compatibility issues with other platforms. PKZIP for MVS does use the same
password standard, so GZIP archives with passwords can be exchanged between
SecureZIP for iSeries , SecureZIP for zSeries, and PKZIP for MVS. Because
GZIP archives that are created with a password with PKZIPi or PKZIP for MVS™
are not part of the GZIP standards, these files will probably appear to be corrupt on
other platforms.

Processing GZIP Archives

PKZIPi can create and extract information from GZIP format archives similar to how
it can be used to create and extract information from a ZIP archive. The creation of a
GZIP archive and other parameters is exactly like all other processes in PKZIPi,
including use of extended attributes. To create a GZIP archive file, code the
parameter GZIP(*YES). The difference is that the archive can only have one (1) file,
and the archive cannot be updated. The PKUNZIP program will identify the GZIP
archive and process it accordingly.

The following are the specific GZIP Restrictions that pertain to the PKZIP and
PKUNZIP programs:

 153

GZIP Compressing
The code used by PKZIPi follows the standards specified in the two applicable RFC's.
Specifically, these are RFC 1952 (GZIP file format specification Version 4.3) and RFC
1951 (DEFLATE Compressed Data Format Specification Version 1.3). PKZIPi should
always be able to create a GZIP compatible compressed file and extract data from a
GZIP compressed file where the GZIP utility matches these two specifications.

• Parameter COMPRESS(*NO) cannot be used because all GZIP archives must
contain compressed data.

• Parameter COMPRESS(*TERSE) cannot be used because terse compression is
a non-standard compression method for GZIP.

• Parameter FTRAN is not valid for GZIP because filenames have to be held in
the ISO 8859-1(LATIN-1) character set.

• Parameter TYPE (type of processing to be performed) cannot be specified
because *DELETE, *UPDATE, *FRESHEN, *MOVEF, or *MOVEU as a GZIP
archive cannot be updated once created.

Only one file is supported per GZIP archive. When creating an archive, this means
that only one file or member can be identified for inclusion in the archive.

If PKZIPi is used to create and encrypt a GZIP archive using a password, other
platforms may not be able to decrypt the data. The encryption algorithm used by
PKZIPi in a GZIP archive is similar to that used by PKZIP, but it is not supported as
part of the specifications for GZIP.

Once an iSeries SAVF has been zipped into a GZIP archive, the archive will extract on
another platform but will not be available as a SAVF. It will just be a binary file and
of no use on another platform.

The file name stored in an archive created by PKZIPi will typically contain library,
file, and member names (directory components) which relate to the qualifiers of the
original iSeries name. According to the GZIP specifications, the file name stored
should be the original name of the file being compressed, with any directory
components removed. Most GZIP utilities support directory components, and the
default PKZIPi processing will include library, file, and member names in the output
file name. Note: It is not possible to create a GZIP archive using PKZIPi that does
not have the file name stored in the archive.

GZIP Extracting
If a file name is present in the GZIP archive, it will be held in the ISO 8859-1
(LATIN-1) character set.

If there is no file name in the archive, one will use the default paths defined in the
EXDIR parameter.

If there is more than one compressed file in the archive, only the first file can be
processed.

When zipping a file into an archive, the archive cannot already exist. It is not
possible to merge or update a GZIP archive.

154

VIEW processing may not show all of the details from the archive, since some
information is not stored (or not stored in convenient locations) in the GZIP archive.
For example, the compressed and uncompressed file sizes will typically be shown as
zero.

To match the GZIP specifications, the time stored in the archive header will be in
universal time format (seconds since 01/01/1970). Because of manipulation during
processing, this time will have only a two-second accuracy (will always be divisible
by 2) and therefore could be one second off from the original file time.

There is no standard iSeries method to set the creation date of a file. As a result, the
time in the GZIP archive is ignored when creating the iSeries output file. It may be
viewed by specifying the parameter TYPE(*VIEW).

Sample GZIP Processing

Compressing a file
The following example shows how to compress a file into a GZIP archive. The PKZIP
command is used to compress data into an archive. To select the GZIP format for the
resulting archive, you must use the GZIP(*YES) option with the PKZIP command:

PKZIP ARCHIVE(‘MYLIB1/MYARCHFIL(GZ01)’) FILES('TESTLIB1/FILE1TXT') TYPE(*ADD)
GZIP(*YES)

The command above will compress the text file TESTLIB1/FILE1TXT into the archive
MYLIB1/MYARCHFIL(GZ01) in GZIP format. The archive must not already exist or an
error message will be generated and the operation will fail.

The output from the above command should look like the following:

File MYARCHFIL created in library MYLIB1.
SecureZIP for iSeries (tm) Data Compression Version 8.2, 2003/05/01
Copyright. 2004 PKWARE, Inc. All rights reserved.
PKZIP (R) is a registered trademark of PKWARE (R), Inc.
EVALUATION Running
EVALUATION, Warning - This license will expire in 29 days on 2003/06/02
Contact your dealer with the following information
Machine ID = 0107X8WT, Processor Group = P10
Scanning files for match ...
File MYARCHFIL in library MYLIB1 with member GZ01 not found.
Found 1 matching files
Member GZ01 added to file MYARCHFIL in MYLIB1.
Member GZ01 removed from file MYARCHFIL in MYLIB1.
Member PZ3AF2447F added to file MYARCHFIL in MYLIB1.
Compressing TESTLIB1/FILE1TXT(FILE1TXT) in TEXT mode
Add TESTLIB1/FILE1TXT/FILE1TXT -- Deflating (31%)
Member PZ3AF2447F renamed to member GZ01.
Member GZ01 file MYARCHFIL in MYLIB1 changed.
PKZIP Compressed 1 files in GZIP Archive MYLIB1/MYARCHFIL(GZ01)
PKZIP Completed Successfully

 155

11 PKWARE PartnerLink: SecureZIP
Reader/SecureLink

This chapter applies only to participants in the PKWARE PartnerLink program.
Other readers may skip this section.

PKWARE PartnerLink enables a PartnerLink sponsor organization that has SecureZIP
for iSeries to:

• Give a partner organization that may not have SecureZIP for iSeries the
ability to use the SecureZIP for iSeries Reader/SecureLink application to
extract files from ZIP archives created by the sponsor

• Enable the partner organization to use SecureZIP for iSeries
Reader/SecureLink to create archives of files for the sponsor organization.
If the sponsor has arranged for partner-created archives to be encrypted, all
such archives are strongly encrypted for a sponsor recipient designated in
advance.

About SecureZIP for iSeries Reader/SecureLink
SecureZIP for iSeries Reader/SecureLink is a special version of SecureZIP for
iSeries. It has two modes of operation, Reader mode and SecureLink mode:

• Reader mode: Reader mode enables SecureZIP functionality used to extract
files from a ZIP archive. In Reader mode, the program can decrypt and
decompress files and authenticate digital signatures.

In Reader mode, the program only extracts; it does not add files to a new or
existing archive and does not compress, encrypt, or sign files. Also, Reader
works only with archives digitally signed by a sponsor.

• SecureLink mode: This mode enables SecureZIP functionality for adding
files to a ZIP archive, including commands to compress, encrypt, and digitally
sign files.

In SecureLink mode, the program can create and update archives, but only
for a designated PartnerLink sponsor. If the sponsor has arranged for archives
to be encrypted, all data archived by a partner is automatically encrypted for
a sponsor recipient using a certificate belonging to the sponsor. Only the
sponsor-associated recipient can decrypt and read the files in an archive

156

encrypted by SecureLink. SecureLink does not use password-based
encryption.

For convenience of installation, configuration, maintenance and operation,
SecureZIP for iSeries Reader and SecureZIP for iSeries SecureLink have been
combined into a single software package. A single copy of the software can process
ZIP archives from multiple sponsors.

See the chapter relating to PartnerLink in the SecureZIP for iSeries System
Administrator’s Guide for a description of administration and configuration activities
unique to the Reader and SecureLink products.

If You Are a Sponsor: Sign the Central Directory
A sponsor organization uses SecureZIP as usual to work with archives for, or from, a
partner. There is just one special requirement when creating an archive for a
partner: In order for the partner to be able to extract the archive you must sign the
central directory of the archive using a certificate included in the Sponsor
Distribution Package. A Sponsor Distribution Package is a package that PKWARE
assembles for a sponsor to configure partners of that sponsor.

Terms and Acronyms Used in This Chapter
The PKWARE PartnerLink program introduces some new concepts and terminology:

• FF – Acronym for full-featured SecureZIP operations

• SecureLink mode – The mode of SecureZIP ZIP processing that creates an
encrypted ZIP archive for a particular configured PartnerLink sponsor

• Partner / Partner mode – An installation configured using a particular
sponsor’s Sponsor Distribution Package (see below) to be a partner of that
sponsor. A partner uses SecureZIP for iSeries Reader/SecureLink to
work with archives from, or for, the sponsor. Depending on the Sponsor
Distribution Package, a partner can use the program in Reader mode only or
in either Reader mode or SecureLink mode (see below).

• Reader mode – The mode of SecureZIP UNZIP processing that extracts
archives from (and only from) a PartnerLink sponsor configured on the
partner’s system

• Sponsor – An installation responsible for initiating and defining a PartnerLink
sponsor-partner relationship with one or more other installations. A aponsor
uses the full-featured SecureZIP product; a partner uses the special
SecureZIP for iSeries Reader/SecureLink version.

• Sponsor Distribution Package – A configuration package distributed to a
partner on behalf of a sponsor to define the authorization requirements and
provide the certificates needed to process ZIP archives from, or for, the
sponsor. The package is digitally signed using a PKWARE-assigned certificate.

• Sponsor File – A component file in a Sponsor Distribution Package

• Sponsor Imprint – A unique digital representation of a registered sponsor-
partner relationship within the PKWARE PartnerLink program. This may
represent the unique identification of Distribution Package components or of
ZIP archives being read.

 157

• Sponsor/Partner Registration ID – A unique registration number that
identifies a particular sponsor-partner relationship

PKWARE PartnerLink Program: Overview
The PKWARE PartnerLink program provides a straightforward, secure way for an
organization to exchange sensitive information with outside partners.

A PartnerLink sponsor organization establishes a PartnerLink partner relationship
with another organization. As a PartnerLink partner, the external organization
receives the SecureZIP Reader/SecureLink program to use to decrypt and extract
archives created by the sponsor using the full SecureZIP program. The partner can
also use the program to create archives for the sponsor that only the sponsor can
decrypt.

The SecureZIP Reader/SecureLink program used by a PartnerLink partner
extracts archives only from a sponsor and creates and encrypts archives only for a
sponsor.

Decrypting and Extracting Sponsor Data (Reader Mode)
When Reader/SecureLink is installed at a partner location, a sponsor can create,
digitally sign, and encrypt SecureZIP secure containers (ZIP archives) for the
partner. In Reader mode, the Reader/SecureLink program verifies that the data file
received has the appropriate signature from the sponsor and that the signature is
valid. This confirms that the data is from the expected sender and that no tampering
has occurred. The partner can then decrypt and extract the data.

Secure Data from Sponsor to
Partner

Partner

Sponsor’s
SecureZIP

Signed Container
Secured with Password

or Public KeyPartner’s
SecureLink

Reader
•Is the secure container signed?

•Yes – continue
•No – stop processing

•Is it signed by the expected Sponsor?
•Yes – continue
•No – stop processing

•Is the signature valid?
•Yes – return code 0
•No -- warning

158

Partner (SecureLink) Data Exchange to Sponsor
A partner can also use SecureLink to create and, optionally, encrypt ZIP archives. If
the sponsor has provided an encryption key, SecureLink uses it to automatically
encrypt any data placed in an archive. The archive can then be transferred to media
or transmitted to the sponsor electronically.

Secure Data from Partner to
Sponsor

Partner

Sponsor’s
SecureZIP

Secure Container
Encrypted with Sponsors

Public Key(s)
Partner’s

SecureLink

Requirements

License
A license key is provided with the installation package for the system administrator
to use to activate the SecureZIP for iSeries Reader and SecureZIP for iSeries
SecureLink products. One license is used to activate both products for use from one
set of execution libraries.

Operating Environment
SecureZIP for iSeries Reader and SecureZIP for iSeries SecureLink require the
same operating environment as full-featured SecureZIP for iSeries.

Sponsoring Configuration
In order to fully process ZIP Archives, the system administrator for SecureZIP for
iSeries Reader and/or SecureZIP for iSeries SecureLink must install one or
more Sponsor Distribution Packages and provide the corresponding run-time
configuration information for the ZIP and UNZIP jobs to use. The installed Sponsor
Distribution Package determines which archive signatures are approved for Reader

 159

Extract processing and defines the list of sponsor recipients for whom SecureLink
encrypts new archives.

Functional Overview
SecureZIP for iSeries Reader and SecureZIP for iSeries SecureLink enable a
PartnerLink partner to exchange ZIP archives with a sponsor. A Sponsor Distribution
Package provides the partner installation with qualifying controls for processing ZIP
archives received from or created for a sponsor. Multiple sponsor profiles with unique
processing requirements can be configured to support exchanges with multiple
PKWARE PartnerLink sponsors.

A given sponsor profile defines the UNZIP and ZIP capabilities for a partner. In a
given sponsor-partner relationship, a partner operates in Reader mode to extract
archives and in SecureLink mode to create archives (if SecureLink functionality is
licensed).

See the SecureZIP for iSeries System Administrator’s Guide for information on
installing Sponsor Distribution Packages.

General Restrictions
Although many features of full-featured SecureZIP for iSeries are also available to
SecureZIP for iSeries Reader and SecureZIP for iSeries SecureLink, some
limitations apply for these products.

• SecureZIP for iSeries Reader (UNZIP Reader-mode) can only open a ZIP
archive that has been digitally signed by a qualified and configured sponsor,
as specified in the Sponsor Distribution Package.

• SecureZIP for iSeries SecureLink (ZIP SecureLink-mode) can only encrypt
a ZIP archive for a sponsor-designated set of certificate-based recipients.

Attempts to use features that require operational characteristics outside of the
bounds set above are rejected or ignored.

PartnerLink IVP Examples
In the distributed SecureZIP library, there is a CL program named PLIVPZIP that runs
an initial test with the test distributed package from PKWARE with a Sponsor Id
number of 0. The following two examples excerpt steps from the CLP.

READER Example: Step EXTRACT will read in the signed archive by sponsor 0 and
will extract the files to a file TMPTEST. To authenticate the signed archive,
AUTHCHK((*ARCHIVE *SPONSOR 0)) is required to read in the sponsor ID number
“0” sponsor authentication file.

PKUNZIP ARCHIVE('PKW82051L/PLIVPZIP(PLIVPZIP)')
TYPE(*EXTRACT) EXDIR('PKW82051L/TMPTEST')
DROPPATH(*ALL) PASSWORD('PKWARE, Inc.')
AUTHCHK((*ARCHIVE *SPONSOR 0))

160

 Sample Results of Step EXTRACT:

PartnerLink SecureZIP(TM) for iSeries Version 8.2.0, 2005/10/03
Copyright. 1989-2005 PKWARE, Inc. All Rights Reserved.
SecureZip(tm) is a trademark of PKWARE (R), Inc.
SecureZIP for iSeries Reader/SecureLink License
Machine ID = 01041A6E, Processor Group = P05
Digital Certificate Request List:Archive Authenticator
Rqrd Pub *SPONSOR - a0000000.p7
Archive Authenticator List-----------1 processed:
UNZIP Archive: PKW82051L/PLIVPZIP(PLIVPZIP)
Archive Comment:"SecureZIP for zSeries by PKWARE"
Searching Archive PKW82051L/PLIVPZIP(PLIVPZIP) for files to extract
Archive was signed by "PKWARE PartnerLink TEST Signing Certificate" and verified
Extracting file SECZIP/READER/README.TXT
Inflating *DB:PKW82051L/TMPTEST(READMETXT) Text
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

SecureLink Example: Step SLNKZIP will read the file that was extracted above
and create a new archive by selecting files TMPTEST(READMETXT) for compression
with AES256 encryption. The encryption will use the pubic certificates from the
Sponsor ID number “0” recipient file with the parameter ENTPREC((*SPONSOR 0)) or
ENTPREC((*SPONSOR ‘R0000000.p7’)).

PKZIP ARCHIVE('PKW82051L/PLIVPZIP(NEWTESTZ)')
FILES('PKW82051L/TMPTEST(READMETXT)') ADVCRYPT(AES256)
ENTPREC((*SPONSOR 0))

 Sample Results of Step SLNKZIP:

PartnerLink SecureZIP(TM) for iSeries Version 8.2.0, 2005/10/03
Copyright. 1989-2005 PKWARE, Inc. All Rights Reserved.
SecureZip(tm) is a trademark of PKWARE (R), Inc.
SecureZIP for iSeries Reader/SecureLink License
Machine ID = 01041A6E, Processor Group = P05
Scanning files in *DB for match ...
Digital Certificate Request List:Encryption Recipients
Rqrd Pub *SPONSOR -
/yourpath/PKWARE/PLstore/Sponsor/RECIP/r
0000000.p7
Encryption Recipients List-----------1 processed:
CN=PKWARE PartnerLink TEST Encryption Certificate
EMail=PKWAREPartnerLinkCA@pkware.com
Found 1 matching files
Compressing PKW82051L/TMPTEST(READMETXT) in TEXT mode
Add PKW82051.L/TMPTEST/READMETX.T -- Deflating (69%) encrypt(BSAFE AES
256Key)
SecureZIP Compressed 1 files in Archive PKW82051L/PLIVPZIP(NEWTESTZ)
SecureZIP Completed Successfully

Reader (UNZIP) Processing
The following features are provided by Reader:

• An AUTHCHK(Archive) is automatically performed whenever a ZIP archive is
opened, except in the following cases:

 161

o An AUTHCHK(ARCHIVE) is requested manually

o Any form of View action

o A TEST action without any form of AUTHCHK request

• A TAMPERCHECK policy will always be enforced for authentication, regardless
of the SecureZIP configuration policy settings.

• The certificate authority trust chain will automatically be honored from the
installed and configured Sponsor Distribution Package during archive
authentication even if the trusted root certificate is not installed in the local
certificate ROOT store.

• If the sponsor also signed files in an archive with the same certificate used to
sign the archive central directory, the same certificate authority trust chain
used to authenticate the archive signature is used to authenticate signatures
on the files.

Restrictions
The following limitations or special behavior applies when SecureZIP for iSeries is
run in Reader/SecureLink mode:

• Archive types (such as GZIP) that do not support signing the archive central
directory are not available

• Unsigned archives are rejected for processing

Archive Authentication Settings

The archive authentication that is automatically performed when a ZIP archive is
opened for Reader extract processing uses one or more Sponsor Authentication
Configuration Settings to reference an installed Sponsor Authentication File in the
certificate store. This is accomplished by including one or more AUTHCHK
((*ARCHIVE *SPONSOR x) ((*ARCHIVE *SPONSOR y)) parameters where x and y
are sponsor ID numbers.

• At least one AUTHCHK((*ARCHIVE *SPONSOR x)) command is required to
access a ZIP archive for extract processing.

• If more than one Sponsor Authentication Configuration Setting command is
provided, then the archive authentication will accept an archive from any of
the represented sponsors.

Example: Unzipping and authenticating an archive from sponsor 0:
 PKUNZIP ARCHIVE('PKW82051L/PLIVPZIP(PLIVPZIP)')

 TYPE(*EXTRACT)
 PASSWORD('PKWARE, Inc.') OVERWRITE(*YES)
 EXDIR('PKW82051L/TMPTEST') DROPPATH(*ALL)
 AUTHCHK((*ARCHIVE *SPONSOR 0))

162

 Sample Results:
PartnerLink SecureZIP(TM) for iSeries Version 8.2.0, 2005/10/11
Copyright. 1989-2005 PKWARE, Inc. All Rights Reserved.
SecureZip(tm) is a trademark of PKWARE (R), Inc.
SecureZIP for iSeries Reader/SecureLink License
Machine ID = 01041A6E, Processor Group = P05
Digital Certificate Request List:Archive Authenticator
Rqrd Pub *SPONSOR - a0000000.p7
Archive Authenticator List-----------1 processed:
UNZIP Archive: PKW82051L/PLIVPZIP(PLIVPZIP)
Archive Comment:"SecureZIP for zSeries by PKWARE"
Searching Archive PKW82051L/PLIVPZIP(PLIVPZIP) for files to extract
Archive was signed by "PKWARE PartnerLink TEST Signing Certificate" and verified
Extracting file SECZIP/READER/README.TXT
Inflating *DB:PKW82051L/TMPTEST(READMETXT) Text
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

Decryption Certificate Selection
RECIPIENT private-key/certificate selection follows the rules for full-featured
SecureZIP for iSeries local certificate store administration and operations.

File Signature Authentication Certificate Selection
In addition to supporting AUTHCHK *FILES with implicit reference to the AUTHCHK
*ARCHIVE certificate validation, separate and distinct file signatory validation can be
performed outside of the configured Sponsor Distribution Package. However, this
operation is allowed only for files in a sponsor-provided data archive that have
signatures for which certificates are not included in the Sponsor Distribution
Package.

Public-key certificate files supporting file signature authentication can be supplied
through the full-featured SecureZIP for iSeries CER certificate types in the local
certificate store.

SecureLink (ZIP) Processing
With SecureLink, a sponsor-authorized partner can generate a ZIP archive for the
sponsor. Data files placed in the created archive are encrypted for a sponsor-
designated set of certificate-based recipients. The following special features are
provided by SecureLink:

• Unless otherwise specified, a minimum encryption method of AES128 is set
for newly encrypted files.

• All recipients defined in the sponsor-defined recipient package (as configured
from the Sponsor Distribution Package) are included in the encryption
request.

• Recipients identified in the sponsor-defined recipient package are subject to
the SecureZIP ENCRYPOL policy settings in the certificate store configuration.
Individual recipients not passing the designated policy attributes are
eliminated from encryption processing.

• The certificate authority trust chain from the installed and configured Sponsor
Distribution Package is automatically honored for the designated recipients

 163

even if the trusted root certificate is not installed in the local certificate store
ROOT. A trusted root is included in the sponsors authentication package.

• When a sponsor-created ZIP archive is used as input to create a new target
archive, the same features in effect for Reader are activated for the input
archive. In particular, a signed archive is validated with AUTHCHK.

• When a sponsor-source ZIP archive is used as input to create a new target
archive, files copied from the original archive are retained in their original
form.

• Newly created archives may be Viewed by the Reader in accordance with
SecureZIP functionality.

Restrictions
The following features are not available or have limitations for SecureZIP for
iSeries SecureLink:

• GZIP output is not available.

• Self-extracting archives cannot be created.

• An encryption method for supported recipient-based encryption must be used
(“Standard” is not supported).

• Password-based encryption for new archives is not available.

• Encryption is only permitted for sponsor-provided keys.

• All archive creation actions require a qualified response recipient configuration
as provided by the Sponsor Distribution Package.

• Directory Integration with LDAP access to public-key certificates for
encryption and related command settings is not available.

• An archive can be created and encrypted only for recipients associated with a
single sponsor: an ENTPREC request must target a configured sponsor, and
an archive cannot be created for multiple sponsors. Note, however, that
multiple public-key certificates can be included by a given sponsor in one
Sponsor Distribution Package. This implementation rules out the use of DB:
and LDAP: request formats for the ENTPREC command.

• An output archive with FNE(*YES) can be created in accordance with the
qualified sponsor recipient keys. However, because SecureLink can create and
encrypt archives only for a sponsor, a partner cannot update a filename-
encrypted archive from a sponsor for the partner.

Encryption Certificate Selection
ENTPREC public-key/certificate selection is predefined by the Sponsor Distribution
Package. The SecureZIP for iSeries local certificate store is extended to support
sponsor-provided encryption keys with a lookup type of *SPONSOR. The SecureLink
ENTPREC command is limited to access only those public-keys supplied in the
SecureLink Authorized Recipient File.

Sponsor encryption is accomplished by including the ENTPREC((*SPONSOR x))
parameters, where x is the sponsor ID number or sponsor recipient file (R000000x).

164

One ENTPREC((*SPONSOR x)) is required encrypt the files for the sponsor.

Example: Encrypting files into an archive for sponsor 0:
 PKZIP ARCHIVE('PKW82051L/PLIVPZIP(NEWTESTZ)')

 FILES(&FILES1)
 ADVCRYPT(AES256)
 ENTPREC((*SPONSOR 0))

 Sample Results:
PartnerLink SecureZIP(TM) for iSeries Version 8.2.0, 2005/10/11
Copyright. 1989-2005 PKWARE, Inc. All Rights Reserved.
SecureZip(tm) is a trademark of PKWARE (R), Inc.
SecureZIP for iSeries Reader/SecureLink License
Machine ID = 01041A6E, Processor Group = P05
Scanning files in *DB for match ...
Digital Certificate Request List:Encryption Recipients
Rqrd Pub *SPONSOR -
/yourpath/PKWARE/PLstore/Sponsor/RECIP/r0000000.p7
Encryption Recipients List-----------1 processed:
CN=PKWARE PartnerLink TEST Encryption Certificate
EMail=PKWAREPartnerLinkCA@pkware.com
Found 1 matching files
Compressing PKW82051L/TMPTEST(READMETXT) in TEXT mode
Add PKW82051.L/TMPTEST/READMETX.T -- Deflating (69%) encrypt(BSAFE AES
256Key)
SecureZIP Compressed 1 files in Archive PKW82051L/PLIVPZIP(NEWTESTZ)
SecureZIP Completed Successfully

 165

A Performance Considerations

This appendix lists a few performance considerations when running PKZIPi. Most
performance related issues can be controlled by the PKZIP/PKUNZIP parameters.
However, it should be noted that PKZIP data compression is CPU intensive by its
very nature, and that PKZIP/PKUNZIP parameters can only help to a limited degree.
Therefore, it should be expected that a reasonable amount of CPU resources will be
needed for such operations.

Interactive Performance
When compressing large size files, PKZIP will sometimes use as much CPU resources
as the system will allow. With this in mind, processing very large files may perform
best as a submitted job. However, some iSeries environments have constraints on
running interactive jobs. If those interactive jobs run for a long time and use a high
amount of CPU resources, the system will slow down and may issue the message
CPI1479 "Interactive activity approaching capacity of installed feature." In this case,
review the details of this message. This usually means that the interactive systems
are using more resources than the iSeries was configured to use.

Compression Type Performance
Selecting a compression method is one way to get the smallest compressed file with
the relationship to the CPU usage and run times. Sometimes, to get the best results,
you may have to run several tests with the data to balance the compression ratio to
the length of the run time. Running with *MAX will usually get the best compression
ratio but will also run the longest. In most of our test cases, *MAX would run 30%-
40% longer than *NORMAL and might only gain less than 1% better ratio. This is
why we recommend using SUPERFAST (the default) unless your testing implies
otherwise.

To minimize the overhead needed to ZIP, the best thing (and the easiest) is to select
a compression method other than *MAX. PKZIP’s default compression method is
SUPERFAST.

When using the compression method of Maximum, you are only compressing the
data by another 1-8% over a job that might use the SUPERFAST compression
method. The archive file size change is minimal. However, the time difference

166

between a maximum and a SUPERFAST job can be measured in hours if the file is big
enough!

You may read more about the compression levels by prompting the Compression
Level parameter (F1).

Compression Level *SUPERFAST *FAST, *NORMAL, *MAX...

Data Type Selection
Getting the best performance from your iSeries machine with regards to a PKZIP job
can truly depend on the parameters you have selected for the job. In many cases,
the compressed size of a file depends on the type of data (Binary vs. Text), and the
compression type selected. Text will usually compress more since it has a higher
probability of repeated characters.

Knowing the target platform of the data will help you resolve how PKZIP is to treat
the data during the compression process. However, PKZIP treatment of data defaults
to *DETECT. *DETECT means that PKZIP will scan the data (up to 97% of the input
file) to determine whether the data that it is going to compress should be treated as
TEXT or BINARY. This can be an especially painful process if you are selecting large
files for compression. However, to get around the scanning overhead, if you know
you are sending the archive or ZIP file to a PC or to a UNIX machine, you know that
the data will need to be converted to TEXT (or ASCII). Therefore, you should select
file Types(*TEXT). If the data is targeted for another iSeries machine, then you
should select *BINARY. *DETECT should only be used when you do not know the
nature of the data.

You may read more about the data types by prompting the file Types parameter
(F1).

File Types *DETECT *DETECT *TEXT *BINARY

Archive Placement (IFS or in a Library)
For best performance try to store the archives in the IFS. By placing the archive in
the IFS instead of in a library/file reduces the overall CPU usage and in some cases
can reduce the run times as much as 30%-40%.

It is recommended when using the ZIP process for large files that the ZIP archive be
stored in the IFS. This method provides the best performance and makes the most
efficient use of storage space for both ZIP archives and ZIP temporary files.

ZIP64 Processing Considerations
When processing very large files or high volumes of files, the processing
characteristics of PKZIP may vary depending on the phase of processing involved.
Some common processing phases and their run-time characteristics are:

• ZIP file selection: When selecting a very large number of files through many
directories and/or libraries, the initial selection requires IO time and memory
per file to analyze and manage each of the file’s properties. The more files to

 167

select, the more memory and initial startup overhead. Each site will have to
discover their practical limits based on their environments and resources.

• Archive directory read processing: When updating an existing archive that
contains a very large number of files, time and memory again are used to
manage the archives and its directory. Or when using PKUNZIP to view the
files, the more files in the archive, the more memory that is required and the
more time that is involved when sorting the files in archive properties before
displaying or printing the contents.

• Archive updating: When updating a large archive with large file sizes, there
will be overhead to copy the files from the previous archive, before adding or
updating new files to the archive. For example, if you have a 10 GB archive
with 5 files that are each compressed, down to 2 GB, overhead will be
required to copy the compressed files from the old archive to the new archive.
This is another reason for storing the archive in the IFS, which can help
reduce resources rather than storing the archive in a file in a library.

• When compressing large size files, PKZIP will sometimes use as much CPU as
the system will allow. With this in mind, processing very large files may
perform best as a submitted job. Some iSeries systems have constraints on
running interactively, and if interactive jobs run a long time and use high
amounts of CPU resources, their system will start slowing down and may
issue the message CPI1479 "Interactive activity approaching capacity of
installed feature." In this case they should review the details of this message,
which usually means that their interactive systems are using more resources
than the iSeries was configured to use.

Encryption Performance
When using advanced encryption versus no encryption, there will be a slight increase
in the overall size of the archive that contains the AES overhead (approximately 300
bytes per file in archive). The increase in size will be same whether you use AES 128,
AES 192, or AES 256.

AES 256 being the most secure encryption algorithm, will also consume the most
CPU usage. AES 128 on average could use around 9% more CPU than running with
no encryption. AES 256 averages about 3.4% more usage when compared with AES
128 (or around 12.5% versus no encryption).

Extended Attributes Selections
The extended attributes naturally contribute some overhead to the archive but it is
minimal, unless you are compressing a database file in the QSYS library file system
with the parameter DBSERVICE(*YES). This size then depends on the definitions of
the database (fields, headings, etc), but also is very important in rebuilding a DB2
database where it does not exist.

These extended attributes can be stored in two places, called the local header and
central header directories. PKZIPi 8.2 and other current PKWARE products now only
use the extended attributes from the central directory. PKZIP for OS/400 5.5
required some of the attributes in the local header.

168

To help reduce the archive overhead the parameter EXTRAFLD in PKZIPi has been
expanded to select where you want to store the attributes. By using
EXTRAFLD(*Central), you reduce the size of each file in the archive by the size of the
extended attributes. Caution: If the attributes are required on another iSeries
not running on 8.2 or above, use the option EXTRAFLD(*BOTH) or
EXTRAFLD(*YES).

 169

B Examples

Example 1 - PKUNZIP Files to a New or Different Library
To extract the files in the archive to a new library. An example of the files in the
archives are:

PKUNZIP ARCHIVE('atest/qz/tstchg')
Archive: ATEST/QZ(TSTCHG) 88572 bytes 6 files
 Length Method Size Ratio Date Time CRC-32 Name
-------- ------ ------- ----- ---- ---- ------ ----
 259 Defl:F 178 01-16-01 08:24 b5dbf80c TESTLIB1/BEN/BEESON
 449664 Defl:F 48720 01-16-01 14:46 94c7506c
TESTLIB1/MYSPLFTM.P/AQZIP123.4X
 205693 Defl:F 29687 01-16-01 14:46 e2473ea4
TESTLIB1/MYSPLFTM.P/LISTDBOB.X
 27488 Defl:F 6771 01-16-01 14:46 c264817a TESTLIB1/MYSPLFTM.P/QPRINT1X
 3352 Defl:F 800 01-16-01 14:46 3e485445
TESTLIB1/MYSPLFTM.P/T4RSTLIB.XY
 256 Stored 256 01-16-01 15:22 29058c73 TESTLIB1/TEST1/HEX
 -------- ------- --- -------
 686712 86412 6 files

To extract to a new library, use the keyword EXDIR and DROPPATH

PKUNZIP ARCHIVE('atest/qz/tstchg') TYPE(*EXTRACT) EXDIR(mynewlib) DROPPATH(*LIB)

 PKUNZIP Archive: ATEST/QZ(TSTCHG)
 Searching Archive ATEST/QZ(TSTCHG) for files to extract
 Extracting file TESTLIB1/BEN/BEESON NOTE path
 Library MYNEWLIB created. NOTE Library
created
 File BEN created in library MYNEWLIB.
 Member BEESON added to file BEN in MYNEWLIB.
 Member BEESON file BEN in MYNEWLIB changed.
 Inflating: MYNEWLIB/BEN(BEESON) Text NOTE new path
 Extracting file TESTLIB1/MYSPLFTM.P/AQZIP123.4X
 File MYSPLFTMP created in library MYNEWLIB.
 Member AQZIP1234X added to file MYSPLFTMP in MYNEWLIB.
 Member AQZIP1234X file MYSPLFTMP in MYNEWLIB changed.
 Inflating: MYNEWLIB/MYSPLFTMP(AQZIP1234X) Text

Since the library mynewlib did not exist, it was created.

170

Example 2 - CLP with Override for Stdout and Stderr to an OUTQ
The following is an example of overriding the PKZIP and PKUNZIP program output,
and then redirecting the output to an OUTQ. This also provides an example of using
mixed file systems, such as having the archive file in the IFS and selecting files from
the QSYS library file system.

 ZIPEXPL01: PGM PARM(&OUTQ)
/* Program: ZIPEXPL01 Example */
/***/
/* Abstract: This is a example CL program has on parameter for */
/* the OUTQ for the processing of PKZIP for iSeries. If it is */
/* *none or *NONE no overriding to QPRINT will take place. */
/* 1. Will add the PKZIP for iSeries Library to Library List */
/* If it is already part of LIBL then note so as to not */
/* remove at the end. */
/* 2. Set the Current Library (only required if parameters of */
/* PKZIP leaves out the Library and a default is needed) */
/* 3. An example of setting the current directory is IFS */
/* 4. Check input OUTQ. If none keep processing */
/* 5. Override the Stdout and Stderr to input outq */
/* This is where PKZIP will send messages when the */
/* MSGTYPE is (*PRINT) or (*BOTH). */
/* 6. Run Test01 of PKZIP */
/* 7. Run Test02 of PKZIP with archive in IFS */
/* 8. Run Test03 of PKZIP with IFS system */
/* 9. Run Test04 of PKUNZIP to view archive */
/* 10. If the PKZIP Library was not present at the beginning */
/* remove it from *LIBL. */
/* */
/***/

 OUTQ: DCL VAR(&OUTQ) TYPE(*CHAR) LEN(10)
 PKZIPLIB: DCL VAR(&PKZIPLIB) TYPE(*CHAR) LEN(10) +
 VALUE(PKW82051S)
 /* if PKZIP library is in Libl do not remove it at the end */
 LIBLCHG: DCL VAR(&LIBLCHG) TYPE(*CHAR) LEN(1) VALUE('Y')
 CURLIB: DCL VAR(&CURLIB) TYPE(*CHAR) LEN(10) VALUE(MYLIB)
 ZIPDIR: DCL VAR(&ZIPDIR) TYPE(*CHAR) LEN(10) +
 VALUE('/mydir')
 /* Add the PKZIP for iSeries library to library List */
 ADDLIBLE LIB(&PKZIPLIB)
 MONMSG MSGID(CPF2103) EXEC(CHGVAR VAR(&LIBLCHG) +
 VALUE('N'))
 /* Set Current Directory to MYLIB */
 /*(not Required for this test Just an example)*/
 CHGCURLIB CURLIB(&CURLIB)
 /* Set Current Directory to zip */
 /*(not Required for this test Just an example)*/
 CD DIR(&zipdir)

 /* Check input outq to see overides required */
CHKOUTQ: IF COND((&OUTQ *EQ '*none') *OR (&OUTQ *EQ +
 '*NONE')) THEN(GOTO CMDLBL(NOOUTQ))
 /* change Stdout and Stderr to my outq */
 OVRPRTF FILE(STDOUT) TOFILE(*LIBL/QSYSPRT) OUTQ(&OUTQ)
 OVRPRTF FILE(STDERR) TOFILE(*LIBL/QSYSPRT) OUTQ(&OUTQ)
NOOUTQ:

 /* Test basic PKZIP */
 TEST01: PKZIP ARCHIVE('ATEST/PKZ2(MYSL04)') +
 FILES('TESTLIB/MYSPLF(*ALL)') +
 EXCLUDE('TESTLIB/MYSPLF(Q*)')

 /* Test basic PKZIP with archive in IFS and print only messages */

 171

 TEST02: PKZIP ARCHIVE('/mydir /tmpsave/itest01') +
 FILES('TESTLIB/TEST') FILETYPE(*BINARY) +
 TYPARCHFL(*IFS) MSGTYPE(*PRINT)

 /* Test PKZIP with all files in IFS */
 TEST03: PKZIP ARCHIVE('/mydir/tmpsave/itest02.zip') +
 FILES('/mydir/test1/basetest') +
 TYPARCHFL(*IFS) TYPFL2ZP(*IFS)

 /* Test PKUNZIP view of archive from test02 */
 TEST04: PKUNZIP ARCHIVE('/mydir/tmpsave/itest01') +
 TYPARCHFL(*IFS) MSGTYPE(*PRINT)

 /* If PKZIP Library was added to LIBL then remove it */
 ENDPGM: IF COND(&LIBLCHG *EQ 'Y') THEN(RMVLIBLE +
 LIB(&PKZIPLIB))
 ENDPGM

Example 3 - Creating an Archive in Personal Folders (QDLS)
The following is an example of creating and processing the archive in the Document
library Services file system (QDLS). First, assume a folder in QDLS with a name of
MYFOLDER where the archives will be stored. To view the folders, issue the
command WRKLNK '/QDLS/*' (you could use WRKDOC and WRKFLR, but WRKLNK is
better to use since PKZIP will be using /QDLS).

 Work with Object Links

Directory : /qdls

Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attribu
 11=Change current directory ...

Opt Object link Type Attribute Text
 . FLR
 .. FLR
 MYFOLDER FLR
 QBKBOOKS FLR

Run the PKZIP command:

PKZIP ARCHIVE('/QDLS/MYFOLDER/MYARCH1.ZIP') FILES('testlib/ben')
TYPARCHFL(*IFS)

The suffix .ZIP was added to help identify the file as an archive file.

PKZIP for iSeries (tm) Version 8.2, 2003/08/21
Copyright. 2004. PKWARE, Inc. All Rights Reserved.
PKZIP is a registered trademark of PKWARE, Inc.
EVALUATION Running
EVALUATION, Warning - This license will expire in 29 days on 2003/09/20
Contact your dealer with the following information
Machine ID = , Processor Group = P05
Scanning files for match ...
Found 1 matching files
Compressing TESTLIB/BEN(BEESON) in TEXT mode
Add TESTLIB/BEN/BEESON -- Deflating (32%)
PKZIP Compressed 1 files in Archive /QDLS/MYFOLDER/MYARCH1.ZIP
PKZIP Completed Successfully
Press ENTER to end terminal session.

172

To see the file in the folders, run WRKLNK '/QDLS/MYFOLDER/*'

 Work with Object Links

 Directory : /QDLS/MYFOLDER

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes
 11=Change current directory ...

 Opt Object link Type Attribute Text
 . FLR
 .. FLR
 MYARCH1.ZIP DOC

Next, to view the contents, run:

PKUNZIP ARCHIVE('/QDLS/MYFOLDER/MYARCH1.ZIP') TYPARCHFL(*IFS)

SecureZIP for iSeries (tm) Version 8.2

 2003/08/21
Copyright. 2004. PKWARE, Inc. All Rights Reserved.
PKZIP is a registered trademark of PKWARE, Inc.
Archive: /QDLS/MYFOLDER/MYARCH1.ZIP 551 bytes 1 file
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 259 Defl:F 177 32% 11-27-00 15:32 b5dbf80c TESTLIB/BEN/BEESON
 -------- ------- ---- -------
 259 177 32% 1 file
PKUNZIP extracted 0 files
PKUNZIP Completed Successfully
Press ENTER to end terminal session.

Example 4 - Processing Archive on a CD (QOPT)
The following is an example of processing an archive that exists on a CD and using
PKUNZIP to view or extract. Because the archive file is on a CD, and the file system
QOPT controls the CD, this archive basically exists in the IFS.

First, check and ensure the archive is on the CD by doing a WRKLNK (you can use
WRKOPTDIR, but using WRKLNK will show the actual paths required). Remember,
the volume of the CD is also a directory in QOPT file system. If the file names are
longer than eight characters, the file name will be changed, much like you see in
DOS systems. It will contain a tilda (~) followed by a number for files found with
excessive name lengths.

WRKLNK ‘/QOPT/*’

 Work with Object Links

 Directory : /QOPT

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes
 11=Change current directory ...

 Opt Object link Type Attribute Text
 MYTESTLABEL DDIR

 173

The above screen shows that the volume label of the CD is “MYTESTLABEL”. Using
the “5” for the next level option, you can navigate through the directories. You will
then see the files and directories on the root of the CD. For example:

 Work with Object Links

 Directory : /QOPT/MYTESTLABEL

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes
 11=Change current directory ...

 Opt Object link Type Attribute Text
 ARCHIVE.ZIP DSTMF
 GZIPPW.GAR DSTMF
 OS_400~3.DOC DSTMF
 PKZCVT~2.DOC DSTMF
 PKW80~1.SAV DSTMF
 PKW80~1.ZIP DSTMF

To view the archive PKW80~1.ZIP (which is really the long name PKW82051S.ZIP)
contents, use PKUNZIP with *VIEW.

Use the command:

PKUNZIP ARCHIVE('/QOPT/MYTESTLABEL/PKW80~1.ZIP') TYPARCHFL(*IFS)
TYPE(*VIEW)

SecureZIP for iSeries (tm) Version 8.2, 2003/08/22
Copyright. 2004. PKWARE, Inc. All Rights Reserved.
PKZIP (R) is a registered trademark of PKWARE (R), Inc.
Archive: /QOPT/MYTESTLABEL/PKW80~1.ZIP 1373026 bytes 1 file
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 6044544 Defl:N 1372902 77% 08-16-01 21:17 d73f09cf PKW82051S.sav
 -------- ------- ---- -------
 6044544 1372902 77% 1 file
PKUNZIP extracted 0 files
PKUNZIP Completed Successfully

Example 5 - Compressing files from a CD (QOPT)
Using the document (.DOC) files on the CD shown in Example 4, we can compress
the files and store them in the archive in my archive library ATEST under the file
V509 archives with an archive file member named CDTEST01.

PKZIP ARCHIVE('atest/v509/cdtest01')
FILES('/QOPT/MYTESTLABEL/OS_400~3.DOC'
'/QOPT/MYTESTLABEL/PKZCVT~2.DOC') TYPFL2ZP(*IFS)

174

SecureZIP for iSeries (tm) Version 8.2, 2003/08/22
Copyright. 2004. PKWARE, Inc. All Rights Reserved.
PKZIP (R) is a registered trademark of PKWARE (R), Inc. Scanning
files for match ...
Found 2 matching files
Compressing /QOPT/MYTESTLABEL/OS_400~3.DOC in BINARY mode
Add /QOPT/MYTESTLABEL/OS_400~3.DOC -- Deflating (77%)
Compressing /QOPT/MYTESTLABEL/PKZCVT~2.DOC in BINARY mode
Add /QOPT/MYTESTLABEL/PKZCVT~2.DOC -- Deflating (79%)
PKZIP Compressed 2 files in Archive ATEST/V509(CDTEST01)
PKZIP Completed Successfully

Because you would not be able to extract them to the CD, you may want to use the
parameter STOREPATH(*NO) so that only file names OS_400~3.DOC and
PKZCVT~2.DOC are stored in the archive.

Example 6 - Compressing CL with MSG Checking
The following brief example demonstrates using PKZIP in a CL passing the archive’s
library, file, and member as variables and then monitoring for errors from the PKZIP
run.

ZIPEXPL03: PGM PARM(&ZIPLIB &ZIPFILE &ZIPMBR)

/* Program: ZIPEXPL03 Example */
/***/
/* Abstract: This is a example CL program that has 3 paramters */
/* that specifies the archive's Library, File and Member. */
/* 1. Will add the PKZIP for iSeries Library to Library List */
/* If it is already part of LIBL then note so as to not */
/* remove at the end. */
/* 2. Build the archive file namefor PKZIP by concatenating */
/* the inputted library, file and member names. */
/* 3. Compress all files in TESTLIB with PKZIP Command */
/* 4. Monitor for error messages from PKZIP. */
/* If errors send message. */
/* 5. If the PKZIP Library was not present at the beginning */
/* remove it from *LIBL. */
/* */
/***/
 /* &PKZIPLIB contains the current PKZIP library */
 DCL VAR(&PKZIPLIB) TYPE(*CHAR) LEN(10) +
 VALUE(PKW82051S)
 /* if PKZIP library is in Libl do not remove it at the end */
 DCL VAR(&LIBLCHG) TYPE(*CHAR) LEN(1) VALUE('Y')
 /* &ZIPLIB is Library where archive will be stored */
 DCL VAR(&ZIPLIB) TYPE(*CHAR) LEN(10)
 /* &ZIPFILE is File for the archive */
 DCL VAR(&ZIPFILE) TYPE(*CHAR) LEN(10)
 /* &ZIPMBR is Member of the archive file */
 DCL VAR(&ZIPMBR) TYPE(*CHAR) LEN(10)
 /* Archive file for PKZIP built with concatenation */
 DCL VAR(&ZARCHF) TYPE(*CHAR) LEN(36)
 /* Add the PKZIP for iSeries library to library List */
 ADDLIBLE LIB(&PKZIPLIB)
 MONMSG MSGID(CPF2103) EXEC(CHGVAR VAR(&LIBLCHG) +
 VALUE('N'))

 /*Concatenate the libraries, files and members for PKZIP of the archive*/
 CHGVAR VAR(&ZARCHF) VALUE(&ZIPLIB *TCAT '/' *TCAT +
 &ZIPFILE *TCAT '/' *TCAT &ZIPMBR)

 /* Compress all files in the library TESTLIB and */
 /* store them in the archive specified in the */
 /* calling of the CLP program */

 175

 /* If messages AQZ0022 "PKZIP Completed with Errors." */
 /* or AQZ0012 "PKZIP ending with Nothing to do" */
 /* are returned */
 /* from PKZIP, send message indicating an error */
 /* Occured. */
 PKZIP ARCHIVE(&ZARCHF) FILES('TESTLIB/*all(*all)') +
 COMPRESS(*NORMAL) ARCHTEXT('This the text +
 of the archive for example 3')
 MONMSG MSGID(AQZ0022) EXEC(SNDPGMMSG MSG('PKZIP +
 Ended with MONMSG for AQZ0022'))
 MONMSG MSGID(AQZ0012) EXEC(SNDPGMMSG MSG('PKZIP +
 Ended with MONMSG for AQZ0012'))

 /* If PKZIP Library was added to LIBL then remove it */
 ENDPGM: IF COND(&LIBLCHG *EQ 'Y') THEN(RMVLIBLE +
 LIB(&PKZIPLIB))
 EOJ: ENDPGM

Example 7 – Compressing Spool Files Samples
The following are several samples demonstrating the selection of spool file for
compression.

Sample 1: Select a specific spool file (MYSPLFFILE) for the specific job (jobname-
WSSSPL, User-WSS and job number 11) in all output queues (the default of
SFQUEUE) and convert the spool file to a PDF format SFTARGET(*PDFLETTER) to fit
a letter format. store the archive in the IFS with TYPARCHFL(*IFS) .

PKZSPOOL ARCHIVE('/yourpath/bills/splftest01.zip') TYPARCHFL(*IFS)
 SPLFILE(MYSPLFILE) SFUSER(*ALL) SFJOBNAM(11/WSS/WSSSPL)
 SFTARGET(*PDFLETTER) SFTGFILE(*GEN1P)

Sample 2: Select all spool files belonging to users WSS and TAIT (SPLUSERID) that
resides in the OUTQ QPRINTS (SFQUEUE) and compress them as spool files with
SFTARGET(*SPLF). This might be done to save the spool files for later review since
this OUTQ is purged on a regular basis.

 PKZSPOOL ARCHIVE('/yourpath/bills/splftest02.zip') TYPARCHFL(*IFS)
 SFUSER(WSS TAIT) SFQUEUE(QPRINTS) SFTARGET(*SPLF) SFTGFILE(*GEN1)

Sample 3: Using the archive from Sample 2, we want to restore or extract the spool
files in order to print them again. Except in this case we want them to belong to the
user MAS with SPLUSERID and place the spool files in the OUTQ MASQ (SFQUEUE)
located in the library DEVPLIB.

 PKUNZIP ARCHIVE('/yourpath/bills/splftest02.zip') TYPARCHFL(*IFS)
 TYPE(*EXTRACT) SPLUSRID(MAS) SFQUEUE(DEVPLIB/MASQ)

Sample 4: Select the spool file QPRINTS (SPLFILE), spool file number 17 (SPLNBR),
user MAS (SFUSER) and convert the file to a TEXT file with SFTARGET(*TEXTFC). In
this case, the file is needed to read into a PC program and the user wants the ANSI
control characters in position 1 of each line.

176

 PKZSPOOL ARCHIVE('/yourpath/bills/splftest04.zip') TYPARCHFL(*IFS)
 SPLFILE(QPRINTS) SFUSER(MAS) SPLNBR(17)
 SFTARGET(*TEXTFC) SFTGFILE(*GEN1P)

Sample 5: Now we want to extract the text file created in Sample 4 to one of our
shared drives areas ('/yourpath/PCFILES') that our PCs can access. In this case the
normal extraction would identify the file as a text file and would convert it to
EBCDIC. Since the file will be used by a PC program that is expecting the data to be
in ASCII, we will have to extract the file as binary since the internal file is already in
ASCII. By specifying FILETYPE(*BINARY), this ensures that no translation of the data
takes place.

PKUNZIP ARCHIVE('/yourpath/bills/splftest04.zip') TYPARCHFL(*IFS) TYPFL2ZP(*IFS)
TYPE(*EXTRACT) FILETYPE(*BINARY)
EXDIR('/yourpath/PCFILES') DROPPATH(*ALL)

Example 8 – PKZSPOOL The Last Spool File of Current Job
The following brief CLP example demonstrates using PKZSPOOL to compress to a
PDF, only the last spool file that was written out by the current job.

 ZIPEXPL07: PGM
/* Program: ZIPEXPL07 Example */
/***/
/* Abstract: This is an example CL program that perform several */
/* task that prints reports. Then compresses only the LAST */
/* spool file created to a PDF file in a archive */
/* */
/***/

/* display the properties of the files start with "i" in QIBM folder */
 DSPLNK OBJ('/QIBM/i*') OUTPUT(*PRINT) +
 DETAIL(*EXTENDED) DSPOPT(*ALL)

 /* display all libraries that start with Q and print */
 DSPOBJD OBJ(*LIBL/Q*) OBJTYPE(*LIB) DETAIL(*BASIC) +
 OUTPUT(*PRINT)

/* Compress the ONLY the last spool file created to a PDF file */
 PKZSPOOL ARCHIVE('/yourpath/bills/PKZdata1.zip') +
 SFJOBNAM(*) SPLNBR(*LAST) +
 SFTARGET(*PDFLETTER) SFTGFILE(*GEN1P) +
 TYPARCHFL(*IFS)
 ENDOFJOB: ENDPGM

Example 9 - CL to Compress All Spool Files for a Job to a PDF
The following brief example demonstrates using PKZIP in a CL to pass the archive’s
library, file, and member as variables and then monitor for errors from the PKZIP
run.

 177

 ZIPEXPL08: PGM
/* Program: ZIPEXPL08 Example */
/***/
/* Abstract: This is an example CL program that perform several */
/* task that prints reports. Then submits a job at the end of */
/* the job that will compress all spool files to PDF files. The */
/* reason the job was submitted was to also compress the job log */
/* to a PDF */
/* */
/***/
 /* Current Job Name */
 DCL VAR(&MYJOBNM) TYPE(*CHAR) LEN(10) VALUE(' ')
 /* Current Job User */
 DCL VAR(&MYJUSER) TYPE(*CHAR) LEN(10) VALUE(' ')
 /* Current Job Number */
 DCL VAR(&MYJNBR) TYPE(*CHAR) LEN(10) +
 VALUE('000000')
/* retrieve the job name, user, and job number for later use */
 RTVJOBA JOB(&MYJOBNM) USER(&MYJUSER) NBR(&MYJNBR)
/* this job to get a full job log */
 CHGJOB LOG(4 00 *SECLVL) LOGCLPGM(*YES)

/* display the properties of the files start with c in my folder */
 DSPLNK OBJ('/yourpath/bills/c*') OUTPUT(*PRINT) +
 DETAIL(*EXTENDED) DSPOPT(*ALL)
 DSPAUT OBJ('/yourpath/BILLS') OUTPUT(*PRINT)

/* create an archive with one file */
 PKZIP ARCHIVE('/yourpath/bills/PKZtest1.zip') +
 FILES('/yourpath/bills/chartest2.zip') +
 TYPARCHFL(*IFS) TYPFL2ZP(*IFS) STOREPATH(*NO)

/* display detail attributes for the new archive created */
 DSPLNK OBJ('/yourpath/bills/PKZtest1*') OUTPUT(*PRINT) +
 DETAIL(*EXTENDED) DSPOPT(*ALL)

/* submit a job to create all spool Files including the job log into a */
/* PDF file and place them in archive PKZdata1 */
 SBMJOB CMD(PKZSPOOL +
 ARCHIVE('/yourpath/bills/PKZdata1.zip') +
 SFJOBNAM(&MYJNBR/&MYJUSER/&MYJOBNM) +
 SFTARGET(*PDFLETTER) SFTGFILE(*GEN1P) +
 TYPARCHFL(*IFS)) JOB(&MYJOBNM) +
 INLLIBL(*CURRENT)
 ENDOFJOB: ENDPGM

Example 10 - Compress File with Public Digital Certificates

Requires SecureZIP

The first ZIP test will use both of the public certificates and 256-bit AES algorithm to
encrypt and compress one file to an archive in the folder that was created earlier.
This test will use the *MBRSET and *FILE types for the selection of the certificates.

PKZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC01.zip')
 FILES('PKW82051s/$CONTACT') ADVCRYPT(AES256)
 TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*MBRSET pktestdb3.crt)
 (*FILE '/myroot/pkware/CStore/Public/pktestdb4.crt'))

178

Scanning files in *DB for match ...
Total Recipients processed 2
Archive Recipient List:
CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
Found 1 matching files
Compressing PKW82051S/$CONTACT($CONTACT) in TEXT mode
Add PKW82051.S/$CONTACT/$CONTACT -- Deflating (80%) encrypt(BSAFE AES 256
Key)
SecureZIP Compressed 1 files in Archive /myroot/pkware/CStore/Testzips/TestC0
1.zip
SecureZIP Completed Successfully

The second ZIP test will use both of the public certificates and AES256 algorithm to
encrypt and compress one file to an archive in the folder. This test will use the *DB
with email and common name for the selection of the certificates.

PKZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC02.zip')
 FILES('PKW82051s/$CONTACT') ADVCRYPT(AES256)
 TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*DB 'EM=PKTESTDB3@nowhere.com')
 (*DB 'CN=PKWARE Test4'))

Scanning files in *DB for match ...
Total Recipients processed 2
Archive Recipient List:
CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
Found 1 matching files
Compressing PKW82051S/$CONTACT($CONTACT) in TEXT mode
Updating:PKW82051.S/$CONTACT/$CONTACT Deflating (80%) encrypt(BSAFE AES 2
56Key)
SecureZIP Compressed 1 files in Archive /myroot/pkware/CStore/Testzips/TestC0
2.zip
SecureZIP Completed Successfully

Example 11 - Decrypting File with Private Key Certificates

Requires SecureZIP

In order to decrypt the file you will need to provide at least one valid private
certificate with the password that matches a recipient on the archive.

PKUNZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC01.zip')
 TYPE(*TEST)
 TYPARCHFL(*IFS)
 ENTPREC((*DB 'CN=PKWARE Test4' ('PKWARE')))

Example 12 - Sign Files and Archive with Private Keys

Requires SecureZIP

Create an archive and sign the files in the archive by two signers and then sign the
archive directory. Note that signing requires the private key.

 179

PKZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC03.zip')
 FILES('PKW82051s/$CONTACT') ADVCRYPT(AES256)
 TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*DB 'EM=PKTESTDB3@nowhere.com')
 (*DB 'CN=PKWARE Test4'))
 SIGNERS((*FILE *MBRSET 'pktestdb3.p12' (PKWARE))
 (*ALL *MBRSET 'pktestdb4.p12' (PKWARE)))

Scanning files in *DB for match ...
2 Encryption Recipients processed
Encryption Recipients List:
--CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
--CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
2 File Signers processed
File Signers List:
--CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
--CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
1 Archive Signer processed
Archive Signer List:
--CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
Found 1 matching files
Compressing PKW820XXS/$CONTACT($CONTACT) in TEXT mode
Add PKW820XX.S/$CONTACT/$CONTACT -- Deflating (80%) encrypt(BSAFE AES 256Key)
SecureZIP Compressed 1 files in Archive
/myroot/pkware/CStore/Testzips/TestC03.zip
SecureZIP Completed Successfully

Example 13 - Authenticate Signed Files and Archive

Requires SecureZIP

When doing a basic view of the newly signed archive, notice that only the archive
directory signatures are validated. To validate the signature of the files would require
a TYPE(*TEST).

 PKUNZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC03.zip')
 TYPE(*VIEW) TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 AUTHCHK((*ARCHIVE *MBRSET 'pktestdb4.crt')) AUTHPOL(*WARN (*ALL))

1 Archive Signer processed
Archive: /myroot/pkware/CStore/Testzips/TestC03.zip 7053 bytes 1 file

 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 5451 Defl:F 1702 69% 01-11-05 13:34 f091572d
!PKW820XX.S/$CONTACT/$CONTACT
 -------- ------- ---- -------
 5451 1702 69% 1 file
Archive has been Digitally Signed.
Archive was signed by "PKWARE Test4" and verified
SecureUNZIP extracted 0 files
SecureUNZIP Completed Successfully

When the files in the archive are tested or extracted, the archive signature is
validated first and then, after each file has been tested, the file’s signatures are
tested. If no AUTHCHK parameter is entered, all signatures are validated.

180

 PKUNZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC03.zip')
 TYPE(*TEST) TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*DB 'CN=PKWARE Test3' 'PKWARE'))

1 Encryption Recipients processed
UNZIP Archive: /myroot/pkware/CStore/Testzips/TestC03.zip
Searching Archive /myroot/pkware/CStore/Testzips/TestC03.zip for files to
extract
Archive was signed by "PKWARE Test4" and verified
Testing: PKW820XX.S/$CONTACT/$CONTACT
File was signed by "PKWARE Test4" and verified
File was signed by "PKWARE Test3" and verified
PKW820XX.S/$CONTACT/$CONTACT tested OK
No errors detected in compressed data of
/myroot/pkware/CStore/Testzips/TestC03.zip.
SecureUNZIP Completed Successfully

Example 14 - Encryption using LDAP search for Recipients

Requires SecureZIP

 PKZIP ARCHIVE('/yourpath/aV82Test/test013.zip')
 FILES('/yourpath/aV82Test/recp/Test cases.txt')
 TYPARCHFL(*IFS) TYPFL2ZP(*IFS) TYPLISTFL(*IFS)
 STOREPATH(*NO) ADVCRYPT(AES256)
 ENTPREC((*LDAP ‘EM=bill.Somebody@pkware.com' *N *RQD))

Displayed output from example.

Scanning files in *IFS for match ...
Total Recipients processed 2
Archive Recipient List:
CN=PKWCADMIN EMail=none
CN=William Somebody EMail=bill.Somebody@pkware.com
Found 1 matching files
Compressing /yourpath/aV82Test/recp/Test cases.txt in BINARY mode
Add Test cases.txt -- Deflating (81%) encrypt(BSAFE AES 256Key)
SecureZIP Compressed 1 files in Archive /yourpath/aV82Test/test013.zip
SecureZIP Completed Successfully

 181

C List Files

The list file capabilities provided in the PKZIP and PKUNZIP commands can be a
powerful tool for maintaining detailed selection criteria and to exclude files. PKZIP
and PKUNZIP commands also allow creating a list of files that are located in a
particular archive.

Creating List Files
Both PKZIP and PKUNZIP can create a text format file of file names that meet criteria
entered within the FILES and EXCLUDE parameters. In PKZIP, the output files
contain the names of all files in the OS/400 format, depending on if the files are from
the QSYS file system or IFS. The PKUNZIP program will produce a list of names in
the format of the archive. To create an output list file, place the output file name in
the parameter CRTLIST(). The default value is CRTLIST(*NONE).

Depending on the value of the TYPLISTFL parameter, the output file can be put in
either the QSYS file system or IFS.

TYPLISTFL(*DB): When the file system is QSYS, the output file will create
a physical file (PF-DTA) with a record length of 132. For the file format in
CRTLIST, you can use any of the following formats: library/file,
library/file(member), file, or file(member). When a member is not entered,
the member name will be the same as the file name. You should use the
utility that your organization uses to edit data files.

TYPLISTFL(*IFS): When using the IFS, the output file will create a stream
file (*STMF object type). Most organization uses EDTF. For the file format in
CRTLIST, you can use any of the following formats: file, file.suffix, dir1/file,
dir1/dir2/../dirn/file, /dir1., etc. When the path does not start with ‘/’, then
the path starts in your current directory (relative path).

When creating a file manually, follow the creation attributes described above.

Using List Files as Input
Both PKZIP and PKUNZIP programs can use list file parameters for both selections of
files (INCLFILE(‘file name’)) and/or the excluding of file (EXCLFILE(‘file name’). They
can also use an inlist file for the encryption recipient ENTPREC. The file name of

182

parameters depends on the setting of TYPLISTFL (*DB or *IFS) and should follow the
guidelines in “Creating List Files,” above.

When using PKZIP, the format of files in the list file should be in the format of the
iSeries files that will be processed. See the parameters FILES and EXCLUDE for
specifications.

When using PKUNZIP, the format of the files in the list file should be in the format of
the archive. See the parameters FILES and EXCLUDE for specifications.

PKUNZIP also has an option to create a list file in expanded mode, which will create
the date and time along with the file names. This is accomplished by having a ‘>’
character being the in the first position of the CRTLIST parameter. See the two
examples below.

Create normal list file: PKUNZIP ARCHIVE('atest/V800/listf')
CRTLIST('atest/listfile(demo)')

 Edit File: ATEST/LISTFILE(DEMO)
 Record : 1 of 4 by 8 Column : 1 132 by 74
CMD+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
 ************Beginning of data**************
 TESTLIB/MYFILE/MYMBR
 TESTLIB/MYFILEGE.R/MYMBR
 TESTLIB/MYFILETE.XT/MYMBR
 TESTLIB/MYFILE27.3/MYMBR
 ************End of Data********************

Create an expanded list file: PKUNZIP ARCHIVE('atest/V800/listf')
CRTLIST('>atest/listfile(demo)')

 Edit File: ATEST/LISTFILE(DEMO)
 Record : 1 of 4 by 8 Column : 1 132 by 74
CMD+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
 ************Beginning of data**************
 DT(05-20-03 16:16) TESTLIB/MYFILE/MYMBR
 DT(02-14-03 16:44) TESTLIB/MYFILEGE.R/MYMBR
 DT(02-14-03 16:44) TESTLIB/MYFILETE.XT/MYMBR
 DT(02-14-03 16:44) TESTLIB/MYFILE27.3/MYMBR
 ************End of Data********************

 183

D Translation Tables

Text files (such as program source code) are usually held within an archive using the
ASCII character set for compatibility with other versions of PKZIP. For these to be
usable on OS/400, they must be converted to the IBM EBCDIC character set. PKZIPi

uses one of two possible internal translation tables, which should be suitable for
most customers. These translation table members are used by parameters FTRAN
and TRAN in both the PKZIP and PKUNZIP programs. Included (as part of the
distribution) are a series of override translation tables. Some users may wish to
define their own table.

The override translation tables included are stored as source members in file
PKZTABLES PKZIPi resources tables. By referencing the members in parameters
TRAN and FTRAN, PKZIPi will access the selected member in the PKZTABLES file
and parse them to an internal hexadecimal table for use in translation.

The following translation tables are included:

Table
Name

Translation
from

Translation
to

Explanation

ASCIIISO EBCDIC ASCII - iso Translate Table

LATIN1 EBCDIC ASCII Latin Translate Table

NOOP NO-OP Translation Table Straight Hex

UKASCII EBCDIC UK ASCII Translate Table

UKASCIIE EBCDIC UK ASCII Translate Table-Euro

USASCII EBCDIC USA ASCII Translate Table

(Internal Default)

USASCIIE EBCDIC USA ASCII Translate Table-Euro

Standard Code Page Support with Tables
Three data translation tables are available to assist with one or more of the latest
standard EBCDIC text translation to ASCII. These tables were built to relate directly
to IBM code pages numbers.

Code page tables available are:

184

Table
Name

ASCII

Code Page

EBCDIC

Code Page

Explanation

PKZ819037 819 037 ASCII-819 <-> EBCDIC-037
Translation

PKZ819273 819 273 ASCII-819 <-> EBCDIC-273
Translation German

PKZ819277 819 277 ASCII-819 <-> EBCDIC-277
Translation Den/Nor

PKZ819278 819 278 ASCII-819 <-> EBCDIC-278
Translation Fin/Swe

PKZ819280 819 280 ASCII-819 <-> EBCDIC-0280
Translation Italy

PKZ819284 819 284 ASCII-819 <-> EBCDIC-284
Translation Spanish

PKZ819297 819 297 ASCII-819 <-> EBCDIC-297
Translation French

PKZ819500 819 500 ASCII-819 <-> EBCDIC-500
Translation ISO8859-1

PKZ819871 819 871 ASCII-819 <-> EBCDIC-871
Translation Icelandic

PKZ850037 850 037 ASCII-850 <-> EBCDIC-037
Translation

PKZ850284 850 284 ASCII-850 <-> EBCDIC-284
Translation Spanish

International Code Page Support
Some data-interchange environments require specialized multi-language character
translation support. PKZIPi provides tables for character based data translation
through translation tables that are also included in the PKZTABLES.

 185

The tables for the following international code pages are provided in the PKZIPi

PKZTABLES as members TRTxxyy (where xx = “from” and yy = “to”).

Language EBCDIC ASCII EURO/ASCII FROM TO EURO

German 273 850* 858 EB AA AI

Spanish 284 850 858 EJ AA AI

Portuguese 282 850 858 EI AA AI

Italian 280 850 858 EG AA AI

Danish 277 850 858 EE AA AI

Norwegian 277 850 858 EE AA AI

Swedish 278 850 858 EF AA AI

Finnish 278 850 858 EF AA AI

French 297 850 858 EM AA AI

* IBM-850 = IBM-4946

These members are provided "as is.” It is the responsibility of the user to ensure
that data translation mapping is in accordance with their business needs.

Translation Table Layout
There are two translation tables in PKZTABLES. The first table is a translation from
ASCII to EBCDIC. The second is EBCDIC to ASCII.

In each table there are 256 entries representing hex values from x’00’ thru x’FF’.

Each entry is represented as a 4-character field such as 0x00 and 0xFF.

On each line there must be 8 entries with each entry separated by a space. With 8
entries per line, there must be 32 lines of table entries for each table set,
representing the 256 translation values.

The tables have embedded comments to help in their documentation.

In the table example below, to translate an ASCII character A (hexadecimal x’41’ or
decimal value of ‘65’), go to entry 65 in the table (Line 8, entry 2) and find a
hexadecimal x’C1’ which is the EBCDIC A.

See “Example of PKZTABLES (USASCII) Translation Table.”

Note: Do not alter any other members found in the PKZTABLES file or PKZIPi may
not function correctly.

Creating New Translation Table Members
Take the following steps to define your own translation table:

1. Copy one of the distributed members in PKZTABLES to a member name of
your choice.

2. Edit the new table using the OS/400 Source Entry Utility (SEU).

3. Change the values with respect to the layout describe above, making sure not

186

to alter the overall table layout. If the overall layout is altered, PKZIPi may
not work correctly.

4. Save the member and test your changes.

Example of PKZTABLES (USASCII) Translation Table

/* PKZIP/400 Translate Table USASCII to EBCDIC */
/*00-07*/ 0x00 0x01 0x02 0x03 0x37 0x2D 0x2E 0x2F /*00-07*/
/*08-0f*/ 0x16 0x05 0x25 0x0B 0x0C 0x0D 0x0E 0x9F /*08-0f*/
/*10-17*/ 0x10 0x11 0x12 0x13 0xB6 0xB5 0x32 0x26 /*10-17*/
/*18-1f*/ 0x18 0x19 0x3F 0x27 0x1C 0x1D 0x1E 0x1F /*18-1f*/
/*20-27*/ 0x40 0x5A 0x7F 0x7B 0x5B 0x6C 0x50 0x7D /*20-27*/
/*28-2f*/ 0x4D 0x5D 0x5C 0x4E 0x6B 0x60 0x4B 0x61 /*28-2f*/
/*30-37*/ 0xF0 0xF1 0xF2 0xF3 0xF4 0xF5 0xF6 0xF7 /*30-37*/
/*38-3f*/ 0xF8 0xF9 0x7A 0x5E 0x4C 0x7E 0x6E 0x6F /*38-3f*/
/*40-47*/ 0x7C 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 /*40-47*/
/*48-4f*/ 0xC8 0xC9 0xD1 0xD2 0xD3 0xD4 0xD5 0xD6 /*48-4f*/
/*50-57*/ 0xD7 0xD8 0xD9 0xE2 0xE3 0xE4 0xE5 0xE6 /*50-57*/
/*58-5f*/ 0xE7 0xE8 0xE9 0xBA 0xE0 0xBB 0xB0 0x6D /*58-5f*/
/*60-67*/ 0x79 0x81 0x82 0x83 0x84 0x85 0x86 0x87 /*60-67*/
/*68-6f*/ 0x88 0x89 0x91 0x92 0x93 0x94 0x95 0x96 /*68-6f*/
/*70-77*/ 0x97 0x98 0x99 0xA2 0xA3 0xA4 0xA5 0xA6 /*70-77*/
/*78-7f*/ 0xA7 0xA8 0xA9 0xC0 0x6A 0xD0 0xA1 0x07 /*78-7f*/
/*80-87*/ 0x68 0xDC 0x51 0x42 0x43 0x44 0x47 0x48 /*80-87*/
/*88-8f*/ 0x52 0x53 0x54 0x57 0x56 0x58 0x63 0x67 /*88-8f*/
/*90-97*/ 0x71 0x9C 0x9E 0xCB 0xCC 0xCD 0xDB 0xDD /*90-97*/
/*98-9f*/ 0xDF 0xEC 0xFC 0x4A 0xB1 0xB2 0x3E 0xB4 /*98-9f*/
/*a0-a7*/ 0x45 0x55 0xCE 0xDE 0x49 0x69 0x9A 0x9B /*a0-a7*/
/*a8-af*/ 0xAB 0x0F 0x5F 0xB8 0xB7 0xAA 0x8A 0x8B /*a8-af*/
/*b0-b7*/ 0x3C 0x3D 0x62 0x4F 0x64 0x65 0x66 0x20 /*b0-b7*/
/*b8-bf*/ 0x21 0x22 0x70 0x23 0x72 0x73 0x74 0xBE /*b8-bf*/
/*c0-c7*/ 0x76 0x77 0x78 0x80 0x24 0x15 0x8C 0x8D /*c0-c7*/
/*c8-cf*/ 0x8E 0x41 0x06 0x17 0x28 0x29 0x9D 0x2A /*c8-cf*/
/*d0-d7*/ 0x2B 0x2C 0x09 0x0A 0xAC 0xAD 0xAE 0xAF /*d0-d7*/
/*d8-df*/ 0x1B 0x30 0x31 0xFA 0x1A 0x33 0x34 0x35 /*d8-df*/
/*e0-e7*/ 0x36 0x59 0x08 0x38 0xBC 0x39 0xA0 0xBF /*e0-e7*/
/*e8-ef*/ 0xCA 0x3A 0xFE 0x3B 0x04 0xCF 0xDA 0x14 /*e8-ef*/
/*f0-f7*/ 0xE1 0x8F 0x46 0x75 0xFD 0xEB 0xEE 0xED /*f0-f7*/
/*f8-ff*/ 0x90 0xEF 0xB3 0xFB 0xB9 0xEA 0xBD 0xFF /*f8-ff*/

/* PKZIP/400 Translate Table EBCDIC to USASCII */
/*00-07*/ 0x00 0x01 0x02 0x03 0xEC 0x09 0xCA 0x7F /*00-07*/
/*08-0f*/ 0xE2 0xD2 0xD3 0x0B 0x0C 0x0D 0x0E 0xA9 /*08-0f*/
/*10-17*/ 0x10 0x11 0x12 0x13 0xEF 0xC5 0x08 0xCB /*10-17*/
/*18-1f*/ 0x18 0x19 0xDC 0xD8 0x1C 0x1D 0x1E 0x1F /*18-1f*/
/*20-27*/ 0xB7 0xB8 0xB9 0xBB 0xC4 0x0A 0x17 0x1B /*20-27*/
/*28-2f*/ 0xCC 0xCD 0xCF 0xD0 0xD1 0x05 0x06 0x07 /*28-2f*/
/*30-37*/ 0xD9 0xDA 0x16 0xDD 0xDE 0xDF 0xE0 0x04 /*30-37*/
/*38-3f*/ 0xE3 0xE5 0xE9 0xEB 0xB0 0xB1 0x9E 0x1A /*38-3f*/
/*40-47*/ 0x20 0xC9 0x83 0x84 0x85 0xA0 0xF2 0x86 /*40-47*/
/*48-4f*/ 0x87 0xA4 0x9B 0x2E 0x3C 0x28 0x2B 0xB3 /*48-4f*/
/*50-57*/ 0x26 0x82 0x88 0x89 0x8A 0xA1 0x8C 0x8B /*50-57*/
/*58-5f*/ 0x8D 0xE1 0x21 0x24 0x2A 0x29 0x3B 0xAA /*58-5f*/
/*60-67*/ 0x2D 0x2F 0xB2 0x8E 0xB4 0xB5 0xB6 0x8F /*60-67*/
/*68-6f*/ 0x80 0xA5 0x7C 0x2C 0x25 0x5F 0x3E 0x3F /*68-6f*/
/*70-77*/ 0xBA 0x90 0xBC 0xBD 0xBE 0xF3 0xC0 0xC1 /*70-77*/
/*78-7f*/ 0xC2 0x60 0x3A 0x23 0x40 0x27 0x3D 0x22 /*78-7f*/
/*80-87*/ 0xC3 0x61 0x62 0x63 0x64 0x65 0x66 0x67 /*80-87*/
/*88-8f*/ 0x68 0x69 0xAE 0xAF 0xC6 0xC7 0xC8 0xF1 /*88-8f*/
/*90-97*/ 0xF8 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70 /*90-97*/
/*98-9f*/ 0x71 0x72 0xA6 0xA7 0x91 0xCE 0x92 0x0F /*98-9f*/
/*a0-a7*/ 0xE6 0x7E 0x73 0x74 0x75 0x76 0x77 0x78 /*a0-a7*/
/*a8-af*/ 0x79 0x7A 0xAD 0xA8 0xD4 0xD5 0xD6 0xD7 /*a8-af*/
/*b0-b7*/ 0x5E 0x9C 0x9D 0xFA 0x9F 0x15 0x14 0xAC /*b0-b7*/
/*b8-bf*/ 0xAB 0xFC 0x5B 0x5D 0xE4 0xFE 0xBF 0xE7 /*b8-bf*/
/*c0-c7*/ 0x7B 0x41 0x42 0x43 0x44 0x45 0x46 0x47 /*c0-c7*/

 187

/*c8-cf*/ 0x48 0x49 0xE8 0x93 0x94 0x95 0xA2 0xED /*c8-cf*/
/*d0-d7*/ 0x7D 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 /*d0-d7*/
/*d8-df*/ 0x51 0x52 0xEE 0x96 0x81 0x97 0xA3 0x98 /*d8-df*/
/*e0-e7*/ 0x5C 0xF0 0x53 0x54 0x55 0x56 0x57 0x58 /*e0-e7*/
/*e8-ef*/ 0x59 0x5A 0xFD 0xF5 0x99 0xF7 0xF6 0xF9 /*e8-ef*/
/*f0-f7*/ 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 /*f0-f7*/
/*f8-ff*/ 0x38 0x39 0xDB 0xFB 0x9A 0xF4 0xEA 0xFF /*f8-ff*/
/* PKZIP/400 Translate Tables end */

188

E SPOOL Files Considerations

This appendix contains information on how PKZIPi handles spool files in different
scenarios that might be helpful to consider in planning for compressing spool files.

Spool File Selections
Care should be taken when selecting spool files not to set all of the spool file
selection parameters to *ALL, as this will select all spool files on your iSeries. This is
why the default for the user ID is SFUSER(*CURRENT) to at least limit it to the
current user in case a selection is not filled in correctly.

If a spool file is deleted after the selection but before the actual compression takes
place, the PKZIP job will fail.

SPLF Attributes
When a spool file is selected and the parameter EXTRAFL is coded *YES (the
default), then the extended attributes listed below are stored in archive and can be
viewed with PKUNZIP TYPE(*VIEW) VIEWOPT(*ALL). Also when the spool files are
stored in the archive, the date and time for the file is the spool files creation date
and time and can be viewed with PKUNZIP.

Extended Attributes:

• Description: The spool file description is built as follows:

"Job-Name/User-Name/#Job-Number/Spool-File-Name/Fspool-File-
Number.Suffix" For Example: "MYJOB/BILLS#152681/INVOICE/F0021.SPLF"

• Spool file type: *SCS: SNA Character Stream, *IPDS: An intelligent printer
data stream, *AFPDS: Advanced Function Print Data Stream, *USERASCII:
An ASCII data stream user defined, *LINE: Line data that is very printer
specific, and *AFPDSLINE: Mixed data (line data and AFPDS data).

• Target file created: Describes the target type file created during
compression. SPLF: Spool Files, TXT: ASCII Text Conversion, and PDF:
Portable Document Format.

• Number of pages contained in the spool file.

 189

An example of the attributes view seen with –VIEWOPT(*ALL) for a spool file
converted to a PDF might appear as follows:

Filename: CRTCM60.PDF
Detected File type: Binary
Created by: PKZIP for iSeries 8.2 PKZIP 2.x compatible
Minimum to Extract: PKZIP 2.0 Or Greater
Compression method: Deflated [Fast]
Date and Time 2003 Oct 17 07:22:00
Compressed size: 2316 bytes
Uncompressed size: 8146 bytes
32-bit CRC value (hex): 40950039
Extended attributes: yes, [Length = 112]
Spool File Type:*SCS, Target File:PDF, Nbr Of pages(3).
SPLF Desc:EVWSS/EVWSS/#007892/CRTCM/F0060.PDF.
File Comment:"none"

The preceding view comes from the following spool file:

5722SS1 V5R1M0 Work With Output Queue QPRINT2 in QGPL 11/19/02 14:08:53 Page 1
File User User Data Status Pages Cpy Form Tp Pty File Number Job Number Date
Time
CRTCM EVWSS RDY 3 1 *STD 5 60 EVWSS 007892 10/17/02
07:22:00

PDF Creation Attributes
When creating a PDF, the attributes are also stored in the PDF document to help
trace back what spool file they originated from.

• The date and time of the spool file creation will be the PDF date and time of
creation.

• The author will be the user ID that created the spool file.

• The subject will be made up of the spool file name, number, and the job
(number/user ID/job name).

190

An example of a PDF summary is:

 191

F Contact Information

PKWARE, Inc.
Web Site: www.pkware.com

For Licensing, please contact the Sales Division at 937-847-2374 or email
PKSALES@PKWARE.COM.

For Technical Support assistance, please contact the Product Services Division at
937-847-2687 or visit the Support Web site.

PROBLEM REPORTING
Providing appropriate documentation on the initial call for a problem expedites the
analysis and resolution process. The following sections describe the type of
information that should be supplied for each category of problem.

PROBLEM REPORTING (General)
When reporting a problem regarding PKZIP for iSeries or SecureZIP for iSeries,
please be prepared to provide the following information:

• The displayed output from CALL ziplib/WHATOSV or the details that
WHATOSV provides

• Release level of the operating system

• Release level of PKZIP for iSeries being run

• A description of the process being run and any differentiating circumstances
from job(s) that do run

• A display of the command problem with parameters

• A copy of the output and JobLog from the failing execution

• If run from a CL and practical, please include source listing of the CL

• If PKUNZIP is failing, provide the Output from the following:

 PKUNZIP TYPE(*VIEW) VIEWOPT(*ALL)

http://www.pkware.com/
mailto:PKSALES@PKWARE.COM

192

• If requested by Technical Support, the display with various tracing options
turned on

• If practical, please include the archive/input file involved in the failing
execution

PROBLEM REPORTING (Licensing)
When reporting a problem regarding licensing, please be prepared to provide the
following information:

• The displayed output from CALL ziplib/WHATOSV

• A copy of the INSTPKLIC command and its parameters

• A copy of the output from the INSTPKLIC job

If the problem occurs in a PKZIPi job then follow the steps outlined above for
PKZIP for iSeries or SecureZIP for iSeries.

 193

Glossary

This glossary provides definitions for items that may have been referenced in the
PKZIP® documentation. It is not meant to be exhaustive. One Web site that provides
excellent source documentation for computing terms is the IBM Terminology site:

http://www-306.ibm.com/ibm/terminology

Absolute Path Name

A string of characters that is used to refer to an object, starting at the highest
level (or root) of the directory hierarchy. The absolute path name must begin
with a slash (/), which indicates that the path begins at the root. This is in
contrast to a Relative Path Name. See also Path Name.

AES

The Advanced Encryption Standard is the official US Government encryption
stand for customer data.

American Standard Code for Information Interchange

The ASCII code (American Standard Code for Information Interchange) was
developed by the American National Standards Institute for information
exchange among data processing systems, data communications systems,
and associated equipment and is the standard character set used on MS-DOS
and UNIX-based operating systems. In a ZIP archive, ASCII is used as the
normal character set for compressed text files. The ASCII character set
consists of 7-bit control characters and symbolic characters, plus a single
parity bit. Since ASCII is used by most microcomputers and printers, text-
only files can be transferred easily between different kinds of computers and
operating systems. While ASCII code does include characters to indicate
backspace, carriage return, etc., it does not include accents and special
letters that are not used in English. To accommodate those special
characters, extended ASCII has additional characters (128-255). Only the
first 128 characters in the ASCII character set are standard on all systems.
Others may be different for a given language set. It may be necessary to
create a different translation tables (see Translation Table) to create standard
translation between ASCII and other character sets.

American National Standards Institute (ANSI)

An organization sponsored by the Computer and Business Equipment
Manufacturers Association for establishing voluntary industry standards.

http://www-306.ibm.com/ibm/terminology

194

ANSI

See American National Standards Institute.

API

See Application Programming Interface, below.

Application Programming Interface

An interface between the operating system (or systems-related program) that
allows an application program written in a high-level language to use specific
data or services of the operating system or the program. The API also allows
the user to develop an application program written in a high level language to
access PKZIP data and/or functions of the PKZIP system.

Archive

The act of transferring files from the computer into a long-term storage
medium. Archived files are often compressed to save space.

An individual file or group of files which must be extracted and decompressed
in order to be used.

A file stored on a computer network, which can be retrieved by a file transfer
program (FTP) or other means.

The PKZIP file that holds the compressed/zipped data file.

ASCII

See American Standard Code for Information Interchange.

iSeries Object

An object that exists in a library on the iSeries system and is represented by
an object on the PC. For example, a user profile is an iSeries object
represented on the PC by the user profile object.

Binary File

A file that contains codes that are not part of the ASCII character set. Binary
files can utilize all 256 possible values for each byte in the file.

Code Page

A specification of code points for each graphic character set or for a collection
of graphic character sets. Within a given code page, a code point can have
only one specific meaning. A code page is also sometimes known as a code
set.

Command Line

The blank line on a display console where commands, option numbers, or
selections can be entered.

 195

Control Language (CL) Program

A program that is created from source statements consisting entirely of
control language commands.

CRC

See Cyclic Redundancy Check.

Cryptography

A method of protecting data. Cryptographic services include data encryption
and message authentication.

In cryptographic software, the transformation of data to conceal its meaning;
secret code.

The transformation of data to conceal its information content, to prevent its
undetected modification, or to prevent its unauthorized use.

Current Library

The library that is specified to be the first user library searched for objects
requested by a user. The name for the current library can be specified on the
sign-on display or in a user profile. When you specify an object name (such
as the name of a file or program) on a command, but do not specify a library
name, the system searches the libraries in the system part of the library list,
then searches the current library before searching the user part of the library
list. The current library is also the library that the system uses when you
create a new object, if you do not specify a library name.

Cyclic Redundancy Check (CRC)

A Cyclic Redundancy Check is a number derived from a block of data, and
stored or transmitted with the data in order to detect any errors in
transmission. This can also be used to check the contents of a ZIP archive.
It's similar in nature to a checksum. A CRC may be calculated by adding
words or bytes of the data. Once the data arrives at the receiving computer,
a calculation and comparison is made to the value originally transmitted. If
the calculated values are different, a transmission error is indicated. The CRC
information is called redundant because it adds no significant information to
the transmission or archive itself. It’s only used to check that the contents of
a ZIP archive are correct. When a file is compressed, the CRC is calculated
and a value is calculated based upon the contents and using a standard
algorithm. The resulting value (32 bits in length) is the CRC that is stored
with that compressed file. When the file is decompressed, the CRC is
recalculated (again, based upon the extracted contents), and compared to the
original CRC. Error results will be generated showing any file corruption that
may have occurred.

Data Compression

The reduction in size (or space taken) of data volume on the media when
performing a save or store operations.

196

Data Integrity

The condition that exists as long as accidental or intentional destruction,
alteration, or loss of data does not occur.

Within the scope of a unit of work, either all changes to the database
management systems are completed or none of them are. The set of change
operations are considered an integral set.

DBCS

See Double-byte Character Set.

Double-byte Character Set (DBCS)

A set of characters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese, and Korean, which contain more
symbols than can be represented by 256 code points, require double-byte
character sets. Because each character requires 2 bytes, the typing,
displaying, and printing of DBCS characters requires hardware and programs
that support DBCS. Four double-byte character sets are supported by the
system: Japanese, Korean, Simplified Chinese, and Traditional Chinese. See
also the Single-Byte Character Set (SBCS).

EBCDIC

See the Extended Binary Coded Decimal Interchange Code, below.

Encryption

The transformation of data into an unintelligible form so that the original data
either cannot be obtained or can be obtained only by decryption.

Extended Attribute

Information attached to an object that provides a detailed description about
the object to an application system or user.

Extended Binary Coded Decimal Interchange Code (EBCDIC)

The Extended Binary Coded Decimal Interchange Code is an 8-bit binary code
for larger IBM mainframes in which each byte represents one alphanumeric
character or two decimal digits. The single-byte structure has a range of
X’00’ to X’FF’. Control commands are subset with a range of X’00’ to X’3F’
while graphic characters have a range from X’41’ to X’FE’. The space
character is represented by a X’40’. EBCDIC is similar in nature to ASCII
code, which is used on many other computers. When ZIP programs compress
a text file, they translate data from EBCDIC to ASCII characters within a ZIP
archive using a translation table.

File Transfer Protocol (FTP)

In TCP/IP, an application protocol used for transferring files to and from host
computers. FTP requires a user ID and possibly a password to allow access to

 197

files on a remote host system. FTP assumes that the transmission control
protocol (TCP) is the underlying protocol.

FTP

See File Transfer Protocol above.

GZIP

GZIP (also known as GNU zip) is a compression utility designed to utilize a
different standard for handling compressed file data in an archive. Its main
advantages over other compression utilities are much better compression and
freedom from patented algorithms. It has been adopted by the GNU project
and is now relatively popular on the Internet. Additional information can be
found at http://www.gzip.org.

Integrated File System

A function of the operating system that provides storage support similar to
personal computer operating systems (such as DOS and OS/2) and UNIX
systems.

Interactive Job

A job started for a person who signs on to a work station and communicates
(or “converses”) with another computing entity such as a mainframe or
iSeries system. This is in contrast to a Batch Job.

Lempel-Ziv (LZ)

A technique for compressing data. This technique replaces some character
strings, which occur repeatedly within the data, with codes. The encoded
character strings are then kept in a common dictionary, which is created as
the data is being sent.

Library List

A list that indicates which libraries are to be searched and the order in which
they are to be searched. The system-recognized identifier is *LIBL.

Logical Partition

A subset of a single iSeries system that contains resources (such as
processors, memory, and input/output devices). A logical partition operates
as an independent system. If hardware requirements are sufficient, multiple
logical partitions can exist within a system.

New ZIP Archive

A new ZIP archive is the archive created by a compression program when
either an old ZIP archive is updated or when files are compressed and no ZIP
archive currently exists. It may be thought of as the “receiving” archive.
Also see Old ZIP archive.

198

Null Value

A parameter position within a record for which no value is specified.

n-way Processor Architecture

A processor architecture that provides expandability for future system growth
by allowing for additional processors. To the user, the additional processors
are transparent because they separately manage the work load by sharing
the work evenly among the n-way processors.

Old ZIP Archive

An old ZIP archive is an existing archive which is opened by a compression
program to be updated or for its contents to be extracted. It may be thought
of as the “sending” archive. Also see New ZIP archive.

Output Queue

An AS/400 object that contains entries for spooled output files to be written
to an output device.

Packed Decimal Format

A decimal value in which each byte within a field represents two numeric
digits except the far right byte, which contains one digit in bits 0 through 3
and the sign in bits 4 through 7. For all other bytes, bits 0 through 3
represent one digit; bits 4 through 7 represent one digit. For example, the
decimal value +123 is represented as 0001 0010 0011 1111 (or 123F in
hexadecimal).

Path Name

A string of characters used to refer to an object. The string can consist of one
or more elements, each separated by a slash (/), and may begin with a slash.
Each element is typically a directory or equivalent, except for the last
element, which can be a directory or another object (such as a file).

A sequence of directory names followed by a file name, each separated by a
slash.

In a hierarchical file system (HFS), the name used to refer to a file or
directory. The path name must start with a slash (/) and consist of elements
separated by a slash. The first element must be the name of a registered file
system. All remaining elements must be the name of a directory, except the
last element, which can be the name of a directory or file. See also Absolute
Path Name and Relative Path Name.

The name of an object in the integrated file system. Protected objects have
one or more path names.

 199

Physical File

Describes how data is to be presented to (or received from) a program and
how data is stored in the database. A physical file contains a single record
format and at least one member.

Production Library

A library which contains objects needed for normal processing. This contrasts
with a Test Library.

QSYS

The library shipped with the iSeries system that contains objects, such as
authorization lists and device descriptions created by a user, and the system
commands and other system objects required to run the system. The system
identifier is QSYS.

Qualified Name

The full name of the library that contains the object and the name of the
object.

Relative Path Name

A string of characters that is used to refer to an object, starting at some point
in the directory hierarchy other than the root. A relative path name does not
begin with a slash (/). The starting point is frequently a user's current
directory. This is in contrast to an Absolute Path Name. See also Path Name.

Return Code

A value generated by operating system software to a program to indicate the
results of an operation by that program. The value may also be generated by
the program and passed back to the operator.

SBCS

See Single-Byte Character Set.

Single-Byte Character Set (SBCS)

A coded character set in which each character is represented by a one-byte
code point. A one-byte code point allows representation of up to 256
characters. Languages that are based on an alphabet, such as the Latin
alphabet (as contrasted with languages that are based on ideographic
characters) are usually represented by a single-byte coded character set. For
example, the Spanish language can be represented by a single-byte coded
character set. See also the Double-Byte Character Set (DBCS).

Source File

A file of programming code that has not yet been compiled into machine
language. A source file can be created by the specification of

200

FILETYPE(*SRC) on the create command. A source file can contain source
statements for such items as high-level language programs and data
description specifications. Source files maintained on a PC typically use a
.TXT as the extension. On a mainframe, source files are typically found in a
partitioned data set or are maintained within a library management tool.

Spool File

Files that exist in an "output queue" which contain reports to printed on the
AS/400 system. Theses files along with attributes can then be directed and
transformed to a printer attached to your system.

Stream File

A data file that contains continuous streams of bits such as PC files,
documents, and other data stored in iSeries folders. Stream files are well
suited for storing strings of data such as the text of a document, images,
audio, and video. The content and format of stream files are managed by the
application rather than by the system.

System Library

The library shipped with the operating system that contains objects such as
authorization lists and device descriptions created by a user. Also included
are system commands and other system objects required to run the system.
The system identifier is QSYS.

Translation Table

Translation tables are used by the PKZIP and PKUNZIP programs for
translating characters in compressed text files between the ASCII character
sets used within a ZIP archive and the EBCDIC character set used on IBM-
based systems. These tables may be created and modified by the user as
documented in the User's Guide.

Trigger

A set of predefined actions that run automatically whenever a specified action
or change occurs, for example, a change to a specified table or file. Triggers
are often used to automate environments, such as running a backup when a
certain number of transactions are processed.

Truncate

To cut off or delete the data that will not fit within a specified line width or
display. This may also be attributed to data that does not fit within the
specified length of a field definition.

User Interface

The actions or items that allow a user to interact with (and/or perform
operations on) a computer.

 201

ZIP64

ZIP64 is reference to the archive format that supports more than 65,534 files
per archive, uncompressed files greater than 4 Gig and archives greater than
4 Gig.

ZIP Archive

A ZIP archive is used to refer to a single file that contains a number of files
compressed into a much smaller physical space by the ZIP software.

202

Index

/

/ file system, 53

3

3DES, 27, 28

A

About this Manual, 1
Absolute Path Name, 194
ADVCRYPT, 78
AES, 28, 194
American National Standards Institute, 194
American Standard Code for Information Interchange,

194
ANSI, 195
API, 195
Application Programming Interface, 195
Applying a License Key or Authorization Code, 9
Archive, 195
ARCHIVE, 80, 123
Archive Placement (IFS or in a Library), 167
archives, 14

viewing, 34
ARCHTEXT, 81
AS/400 Object, 195
ASCII, 46, 195
AUTHCHK, 82, 124
authenticating, 180
authentication, 24, 25
authority settings, 47
AUTHPOL, 85, 127

B

Binary File, 195
binary records, 41

C

certificate authority, 26, 31
certificates, 25, 26

end entity, 27
root, 27

Code Page, 195
Command Changes, 5
Command Line, 195
Commands, 72, 119

COMPAT, 87
Compressing, 153
Compressing a file, 154
Compressing a SAVF file, 57
Compressing SPOOL Files, 58
Compression, 13
Compression Type Performance, 166
Control Language (CL) Program, 196
Conventions Used in this Manual, 2
CRC, 15, 24, 196
Creating List Files, 182
Creating new Translation Table Members, 186
cross-platform compatibility, 20, 152
CRTLIST, 90, 129
Cryptography, 196
Current Library, 196
CVTDATA, 90, 130
CVTFLAG, 90, 130
CVTTYPE, 91, 130
Cyclic Redundancy Check (CRC), 196

D

Data Compression, 196
data format, text vs. binary, 41
Data Integrity, 197
data security, 23, 31
Data Type Selection, 167
DATEAB, 91
DATETYPE, 91
DBCS, 197
DBSERVICE, 91
decrypting, 179
DELIM, 92
DES, 27
DFTARCHREC, 92
DFTDBRECLN, 131
directories, 52
DIRNAMES, 93
DIRRECRS, 93
Document Library Services file system, 53
Document Library Services file system (QDLS), 54
Double-byte Character Set (DBCS), 197
DROPPATH, 131

E

EBCDIC, 46, 197
ENCRYPOL, 87, 96, 116
encryption, 23, 31, 197

 203

algorithms, 27
filename, 32
passwords, 30
recipient-based, 178
Windows compatibility, 31

Encryption Performance, 168
ENTPREC, 93, 132
Example 1 - PKUNZIP Files to a New or Different

Library, 170
Example 2 - CLP with Override for Stdout and Stderr

to an OUTQ, 171
Example 3 - Creating an Archive in Personal Folders

(QDLS), 172
Example 4 - Processing Archive on a CD (QOPT),

173
Example 5 - Compressing files from a CD (QOPT),

174
Example 6 - Compressing CL with MSG Checking,

175
Example 7 - Compressing Spool Files Samples, 176
Example 8 - PKZSPOOL the last spool file of current

Job, 177
Example 9 - CL to submit a job to compress all spool

files for a job to a PDF, 177, 178, 179, 180, 181
Example of PKZTABLES (USASCII) Translation

Table, 187
Examples, 170
EXCLFILE, 98, 134
EXCLUDE, 99, 135
EXDIR, 135
EXRROPT, 98
Extended Attributes, 197
Extended Attributes Selections, 168
Extended Binary Coded Decimal Interchange Code

(EBCDIC), 197
extended data, 62
extended features, 8
Extracting, 153
extracting files, 44

IFS, 46
Extracting Records into a SAVF file, 58
extracting spool files, 48
extracting Windows text files, 43
EXTRAFLD, 99

F

file attributes, 42
File Considerations, 18
file exclusion inputs, 18
file names, 13

for saved data, 62
file processing support, 51
file selection and name processing, 15
file selection inputs, 16
File Transfer Protocol (FTP), 197
filename encryption

GZIP, 152
FILES, 100, 136
FILESTEXT, 100
FILETYPE, 101, 136
FIPS, 27

FND, 102
FTP, 198
FTRAN, 102, 137

G

Glossary, 194
GNU zip, 150
GZIP, 103, 198
GZIP archives, 151
GZIP Compressing, 153
GZIP Extracting, 153
GZIP processing, 150, 152
GZIP restrictions, 152

I

IBM publications, 3
IFS file system, 52, 53
IFS Summary, 57
IFSCDEPAGE, 103, 138
INCLFILE, 104, 138
Information on the Internet, 3
Input ZIP Archive files, 18
Integrated File System, 198
Interactive Job, 198
interactive performance, 166
International Code Page Support, 185
iPSRA, 60

K

Key Features, 189, 190
keys, 25, 29, 30

L

Large File Considerations, 18
Large File Support File Capacities, 19
Large File Support Summary, 18
Library file system, 53
Library List, 198
Licensing and Initializing the Demo, 8
List Files, 51, 57, 90, 98, 104, 118, 129, 134, 138,

141, 182
List Files and their Usage, 182
Logical Partition, 198

M

MD5, 24
MSGTYPE, 104, 138

N

name processing, 15
Network File System, 54
New Commands, 5
New Features, 4
New ZIP Archive, 198
NFS, 54
Null Value, 199
n-way Processor Architecture, 199

204

O

OAEP processing, 32
Old ZIP Archive, 199
Open Systems file system, 54
Optical file system, 53
Optical File System (QOPT), 55
Other IFS Objects, 53
OUTFILE parameter, 64
OUTPUT parameter, 64
Output Queue, 199
OVERWRITE, 139
Overwriting Current SAVF File, 58

P

Packed Decimal Format, 199
partner, 155
PartnerLink, 155, 160
PASSWORD, 104, 118, 139
passwords, 30, 35
path name, 52, 199

absolute, 52
relative, 53

paths, 46
PDF Creation Attributes, 190
performance considerations, 166
Physical File, 200
PKI, 24, 25
PKQRYCDB command details, 144
PKQRYCDB command summary, 144
PKUNZIP Command, 72, 119
PKUNZIP command details, 123
PKUNZIP command summary, 119
PKZIP command, 72
PKZIP command details, 78
PKZIP for DOS, 13
PKZSPOOL command, 72
PKZTABLES, 186, 187
platform-specific differences, 12
Preface, 1
private key, 25, 26
private-key, 31
Processing with GZIP, 150
Production Library, 200
public key, 25, 26, 27

Q

QDLS, 53
QDLS file system, 54
QFileSvr.400, 54
QNetWare, 54
QNTC, 54
QOpenSys, 54
QOPT, 53, 55
QSYS, 200
QSYS file system, 51
QSYS library file system, 44
QSYS.LIB, 53
Qualified Name, 200

R

RC4, 29
Reader/SecureLink, 155
recipients, 31
Related Publications, 2
Relative Path Name, 200
restore command, 65
Restrictions, 21
Return Code, 200
root, 53

S

Sample GZIP Processing, 154
SAVF, 57
SAVF method, 13
SBCS, 200
SecureLink, 155
SecureZIP

invoking, 12
Self Extracting, 105
self-extracting archives, 38
SELFXTRACT, 105
SFFORM, 106
SFJOBNAM, 107
SFQUEUE, 106, 140
SFSTATUS, 107
SFTARGET, 108
SFTGFILE, 108
SFUSER, 105
SFUSRDTA, 106
SHA-1, 24
Show System Information, 9
signatures, 24
SIGNERS, 110
signing, 25, 26, 179
SIGNPOL, 113
Source File, 200
SPLF Attributes, 189
SPLFILE, 109
SPLNBR, 109
SPLUSRID, 140
sponsor, 155
Sponsor Distribution Package, 156
Spool File, 201
SPOOL File Selecting, 18
Spool File Selections, 189
spool files, 58
SPOOL Files Considerations, 189
Standard Code Page Support, 184
STOREPATH, 115
Stream File, 201
stream files, 53
System Library, 201

T

temporary archive files, 37
text records, 41
TMPPATH, 115
TRAN, 116, 140
Translation Tables, 184, 186, 201

 205

Trial Period, 8
Trigger, 201
Triple DES, 27
Truncate, 201
trust chain, 26
TYPARCHFL, 141
TYPE, 78, 123
TYPFL2ZP, 117, 141
TYPLISTFL, 118, 141

U

UDFS, 54
USASCII, 186, 187
User Interface, 201
User-Defined File System, 54
Using QSYS.LIB Through the Integrated File System

Interface, 56

V

VERBOSE, 118, 142
VIEWOPT, 142
VIEWSORT, 142

W

Windows NT Server file system, 54

X

X.509, 26

Z

ZIP archives, 36, 38, 202
ZIP file format specification, 21
ZIP files, 41
ZIP64, 18, 167, 202
ZIP64 Processing Considerations, 167

	Preface
	About this Manual
	Conventions Used in this Manual
	Related Publications
	Related IBM Publications
	Related Information on the Internet
	Release Summary
	New Products
	New Features
	New Commands
	Command Changes & Defaults
	Migration Considerations for Version 8.2

	User Help and Contact Information

	1 Getting Started
	PKZIP and PKUNZIP Commands
	Basic Features of PKZIPi
	Initializing the License
	Evaluation Period
	Release Licensing
	Show System Information
	Applying a License Key or Authorization Code
	Reporting the PKZIPi for iSeries License

	PKZIP and SecureZIP for iSeries Grace Period
	Invoking PKZIPi Services
	PKZIPi Differences from other Platforms
	Use of SAVF Method
	Data Compression
	ZIP Archives
	Cyclic Redundancy Check
	Encryption
	File Selection and Name Processing
	Primary File Selection Inputs
	File Exclusion Inputs
	Input ZIP Archive Files
	SPOOL File Selecting

	Large Files Considerations
	Large File Support Summary
	Large File Support File Capacities

	Cross Platform Compatibility
	ZIP File Format Specification
	PKZIP/SecureZIP for iSeries Restrictions

	2 Introduction to Data Security
	Encryption
	Authentication
	Data Integrity
	Digital Signature Validation
	Digital Signature Source Validation

	Public-Key Infrastructure and Digital Certificates
	Public-Key Infrastructure (PKI)
	X.509
	Digital Certificates
	Certificate Authority (CA)
	Private Key
	Public Key
	Certificate Authority and Root Certificates

	Types of Encryption Algorithms
	FIPS 46-3, Data Encryption Standard (DES)
	Triple DES Algorithm (3DES)
	Advanced Encryption Standard (AES)
	Comparison of the 3DES and AES Algorithms
	RC4

	Key Management
	Passwords and PINS
	Recipient Based Encryption
	Integrity of Public and Private Keys
	Data Encryption
	Operating System Levels
	Windows Compatibility

	User Encryption Examples
	Zip Compress File(s) and Write to an Archive File
	Display the contents of an Archive File
	Incorrect Password Use

	3 ZIP Files
	“Old” ZIP Archive
	“Temporary” Archive File
	“New” ZIP Archive
	Self-Extracting Archive
	Data Format - Text Records vs. Binary Records
	File Attributes
	PC Shared Drives Format

	4 File Extraction Process
	Extracting Files to the QSYS Library File System
	Authority Settings

	Extracting Files to the IFS
	Path Considerations
	Changing the path(s)
	File Type Considerations

	Extracting zSeries Variable Length Records (RDW/ZDW)
	Extracting Spool Files

	5 iSeries File Processing Support
	QSYS (Library File System)
	QSYS Summary

	IFS (Integrated File System)
	Directories and Current Directory
	Path and Path Names
	Stream Files
	Other IFS Objects
	File Systems in the IFS
	Document Library Services File System (QDLS)
	Optical File System (QOPT)
	Using QSYS.LIB via the Integrated File System Interface
	IFS Summary

	SAVF
	Compressing a SAVF file
	Extracting Records into a SAVF file
	Overwriting Current SAVF File

	Compressing Spool Files

	6 iSeries PKWARE Save/Restore Application Feature (iPSRA)
	How iSeries Save/Restore Application Works
	Save/Restore Command Overview
	File Name in Archive
	Extended Data in Archive
	iPSRA Restrictions
	Use of OUTPUT and OUTFILE with the Save Commands
	How to Use the Save Application Feature
	How to Use the Restore Application Feature
	Database considerations for save and restore

	iPSRA Examples

	7 PKZIP Command
	PKZIP Command Summary with Parameter Keyword Format
	PKZIP Command Keyword Details

	8 PKUNZIP Command
	PKUNZIP Command Summary with Parameter Keyword Format
	PKUNZIP Command Keyword Details

	9 PKQRYCDB “Query Cert Database” Command
	PKQRYCDB Command Summary with Parameter Keyword Format
	PKQRYCDB Command Keyword Details

	10 Processing with GZIP
	Introduction to GZIP (GNU zip)
	GZIP Archive Files Used By PKZIP/SecureZIP for iSeries
	Cross Platform Compatibility
	GZIP Restrictions
	Special Note on GZIP Passwords

	Processing GZIP Archives
	GZIP Compressing
	GZIP Extracting

	Sample GZIP Processing
	Compressing a file

	11 PKWARE PartnerLink: SecureZIP Reader/SecureLink
	About SecureZIP for iSeries Reader/SecureLink
	If You Are a Sponsor: Sign the Central Directory

	Terms and Acronyms Used in This Chapter
	PKWARE PartnerLink Program: Overview
	Decrypting and Extracting Sponsor Data (Reader Mode)
	Partner (SecureLink) Data Exchange to Sponsor

	Requirements
	License
	Operating Environment
	Sponsoring Configuration

	Functional Overview
	General Restrictions
	PartnerLink IVP Examples

	Reader (UNZIP) Processing
	Restrictions
	Archive Authentication Settings
	Decryption Certificate Selection
	File Signature Authentication Certificate Selection

	SecureLink (ZIP) Processing
	Restrictions
	Encryption Certificate Selection

	A Performance Considerations
	Interactive Performance
	Compression Type Performance
	Data Type Selection
	Archive Placement (IFS or in a Library)
	ZIP64 Processing Considerations
	Encryption Performance
	Extended Attributes Selections

	B Examples
	Example 1 - PKUNZIP Files to a New or Different Library
	Example 2 - CLP with Override for Stdout and Stderr to an OU
	Example 3 - Creating an Archive in Personal Folders (QDLS)
	Example 4 - Processing Archive on a CD (QOPT)
	Example 5 - Compressing files from a CD (QOPT)
	Example 6 - Compressing CL with MSG Checking
	Example 7 – Compressing Spool Files Samples
	Example 8 – PKZSPOOL The Last Spool File of Current Job
	Example 9 - CL to Compress All Spool Files for a Job to a P
	Example 10 - Compress File with Public Digital Certificates
	Example 11 - Decrypting File with Private Key Certificates
	Example 12 - Sign Files and Archive with Private Keys
	Example 13 - Authenticate Signed Files and Archive
	Example 14 - Encryption using LDAP search for Recipients

	C List Files
	Creating List Files
	Using List Files as Input

	D Translation Tables
	Standard Code Page Support with Tables
	International Code Page Support
	Translation Table Layout
	Creating New Translation Table Members
	Example of PKZTABLES (USASCII) Translation Table

	E SPOOL Files Considerations
	Spool File Selections
	SPLF Attributes
	PDF Creation Attributes

	F Contact Information
	PKWARE, Inc.
	PROBLEM REPORTING
	PROBLEM REPORTING (General)
	PROBLEM REPORTING (Licensing)

	Glossary
	Index

