PKWARE

Getting Started with
PKWARE® Key Maker™

PKWARE Inc.

Contents

Welcome to PKWARE KeY MaKETueiiiiiiiiiiiiee e 2
INtroduction t0 OPENPGP ... 2
Preparing To Install Key Maker On Z/OS ...t 3
Strong Cryptograpny iN JAVAceoiiiiiiiiiiiiie et 3
INSTAIIING KEY MEKET ...ttt a e e e s snbe e eeaeas 4
Generating OpenPGP Keys and Self-Signed X.509 Certificates..........cccceevvveeeenns 4
(oI =T L (= PP PPPPPPPPPPPPPP 4
(0]] (0] 4 1S F TR PP PO 5
SaAMPIE COMMANTS ...t e et e e e e e e e sabereeeaeas 6
ConVErting KEY FOIMALSuiiiiiiiiiiiiieee e sttt e e s st e e e e e s s st e e e e e e e s nanreeeeaeeeeann 6
(o0] 01V =] o PP PP PPPPPPPPP 6
() 1[0 1 1 PSP 6
SaMPIE COMMANTS ... e e e e s e e e e e e e s snnrrreeeees 7
SIgNING OPENPGP KEYS ..ottt e e e e e e e 8
£ o U EE 8
(]) 1[0 1 1 PO 8
¥ 10T o (= oo 1 0] 0= o S PSP 8
Copying OpenPGP Keys From An EXisting KeYringccccccevvvcvvieeeieeeeiiiiiiieneeeeen 8
(o] o)V PP PP PPPPPPPPPPPPPN 8
(O]] (0] 4 1S F U PP 8
SaAMPIE COMMANTS ...t e e e e e e e e e e e e eaeas 9
Getting Information About Keys IN A RING ..occveeiiiiiiiiiie e 9
] PP PPURPTPPR 9
L@ 0] (0] o 1= PRI 9
Identify info that is displayed for an OpenPGP KeYcccccovviiiiiiniiiiiiniieie e 10
SF=Ta g o1 [oo 101 0 =g (o <P 10
Working with OpenPGP KEY SEIVEIScooiiiiiiiiiiiiii e 10
KEYSEIVEI-SENM ...ttt e e e e e e s e e e e s s st ee e e e e e e s e snnrraeeeeaeeeanns 11
(O]] (0] 1 1S F TP 11
SaAMPIE COMMAND ... e e e e e e sab e e e s 11
KEYSEIVEI-SEAITIt e et e e e e e e e e e e e e 11
(O]] (0] 1 1S S TR PRI 11
SaMPIE COMMANTS ...t e e e e e e snb e eeae s 11
Making Changes to OPenPGP KEYSccuuiiiiiiiei it stnee e e e 12
< 1 ST TPRR 12
L@) 10 1 1P 12
¥ Ta g o1 [oo 101 0 =g (o <P 13
Deleting Keys From A RINQG ...ocueiiiiiiieiieiiieee ettt a e ebnbee e e e e e e 13
(0T o] ST PPPRR 13
(O]] (0] 1 1S F TP 13
SaMPIE COMMANDS ... e e e e e e e neeaae s 13
Displaying Help INfOrmMationocceviiiiiiioiie e 14
1T | o TR UUTT R TUPUPPURUP 14
Displaying Key Maker Version INformationcccccovvueeiiiiiiiniiniiee e 14
(VL] €51 0] o F PP TPPPPRPRPPT 14

Copyright © 2014 PKWARE, Inc. All rights reserved. Any reproduction or distribution of this content without explicit
written permission of PKWARE is prohibited. PKWARE, PKZIP and SecureZIP are registered trademarks of
PKWARE, Inc. in the United States of America and elsewhere. z/OS, i5/0OS, IBM i, zSeries, and iSeries are
registered trademarks of IBM Corporation. Other product names may be trademarks or registered trademarks of their
respective companies and are hereby acknowledged.

(R ST B G0 o (=TT 14

User Help and Contact INformationcoooiiiiiiiii e 14

Welcome to PKWARE Key Maker

Organizations that rely on files encrypted with OpenPGP need a fast, reliable way to encrypt
and decrypt OpenPGP files. They also need a method of ensuring the people who handle
OpenPGP files can easily create and open these files. OpenPGP users identify themselves,
and develop trust through public and private keys.

PKWARE provides SecureZIP to encrypt and decrypt strongly-encrypted files using
passphrases, X.509 certificates and OpenPGP keys. SecureZIP Server eBusiness Edition
includes PKWARE Key Maker to allow you to create and manage OpenPGP keys. This guide
will walk you through the basics of using PKWARE Key Maker.

For more information about SecureZIP, see http://www.pkware.com/software/securezip/

Use of PKWARE Key Maker is covered under the terms and conditions of your SecureZIP
license agreement.

Introduction to OpenPGP

Some organizations use encryption tools based on the OpenPGP standard, rather than
X.509. OpenPGP uses the same basic Public Key Infrastructure principles for exchanging
encrypted files, but uses a decentralized “Web of Trust” method of authenticating
signatures.

SecureZIP extracts and decrypts files that comply with the OpenPGP specification defined by
the Internet Engineering Task Force RFC 4880. SecureZIP can also create OpenPGP-
compliant files and sign files with OpenPGP keys.

OpenPGP keys are typically created by individuals, and authenticated by other individuals.
In the real world, you have friends who can vouch that you are who you say you are. If you
walk into a room full of strangers, your friend can introduce you to the people he knows.
Since you trust that your friend is correctly identifying his friends and acquaintances, your
trust extends to his friends too.

When you translate the above experience to the electronic, OpenPGP world, it works this
way: You create an OpenPGP key to identify yourself. When a friend comes to visit, display
the key. The friend can now sign your key (often called “key signing”) and certify that this
key represents you. Now everyone who trusts the person who signed your key can also
trust that your key is authentic. A Web of Trust is developed as more people authenticate
each key. Everyone in the Web of Trust can also exchange messages in the OpenPGP
format.

In order to use OpenPGP keys with SecureZIP, they must first be generated and stored in
an OpenPGP compliant key repository. Typically, this repository is a keyring file. OpenPGP
public keys are stored in a public keyring file. While not required by the OpenPGP standard,
or by PKWARE Key Maker, public keyring files usually have a file extension of .pkr.
OpenPGP secret keys are stored in a secret keyring file. Secret keyring files usually have a
file extension of .skr. Other file extensions may be used for keyring files. PKWARE
recommends using the .pkr and .skr file extensions respectively when referencing public
and secret keyring files, but other keyring file extensions can be used with this program.

http://www.pkware.com/software/securezip/

The PKWARE Key Maker program provides a means of creating OpenPGP keys and keyring
files for use with SecureZIP.

Preparing To Install Key Maker On z/OS

PKWARE Key Maker in z/OS runs on Java™ v6 and later, using z/0OS UNIX System Services.
Before installing Key Maker, both environments must be installed and configured for use.

To determine your system’s version of Java:

1. Logon to TSO and open the UNIX System Services shell with this command: tso OMVS
2. Type java -version at the shell prompt.
If either of the above commands fails to execute correctly, contact your systems
programmer responsible for the configuration of Unix System Services for your TSO Userid
and the Java Runtime Environment (JRE) before proceeding.

The output of the java -version command should be similar to the following:

Java(TM) SE Runtime Environment (build pmz3160_26fp1-20110419 01)

IBM J9 VM (build 2.6, JRE 1.6.0 z/0S s390-31 20110418_80450 (JIT enabled, AOT enabled)
J9VM - R26_Java626_GA_FP1_20110418_1915 B80450

JIT - r11_20110215_18645ifx8

GC - R26_Java626_GA_FP1_20110418 1915 _B80450

JOCL - 20110418_80450)

JCL - 20110401_01

The USS Shell command printenv may be used to learn more about your specific Java
runtime settings.

When a user is properly configured to use the JRE, the output of the printenv command
should contain variables similar to the following:

PATH=/usr/bin:/usr/lpp/javasJ6.0.1/bin:/usr/lpp/Printsrv/bin:/bin:.
1BM_JAVA_OPTIONS=-Xms16m -Xmx128m
CLASSPATH=/usr/lpp/pkware:/usr/lIpp/java/l6.0.1:/usr/lpp/java/l6.0.1/1ib:/usr/lIpp/java ...
LIBPATH=/usr/lib/java_runtime:/lib:/usr/lib:.:/usr/lpp/Printsrv/lib:/usr/lpp/java/ ...
JAVA_HOME=/usr/lpp/javasl6.0.1

See the “Java Standard Edition Products on z/OS” page on the IBM website for downloads,
documentation and more about Java on z/0S: http://www-
03.ibm.com/systems/z/os/zos/tools/java/index.html.

Strong Cryptography in Java

The Java Developer Kit (JDK) and Java Runtime Environment (JRE) ship with limited support
for strong cryptography using symmetric encryption algorithms with key lengths exceeding
64 bits, due to import control restrictions for some countries. See the US Commerce
Department encryption controls site for more information:
http://www.bis.doc.gov/index.php/policy-guidance/encryption.

Residents of eligible countries (including the United States) can obtain the IBM Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File through the IBM
SDK Policy Files website:
https://www14.software.ibm.com/webapp/iwm/web/prelLogin.do?source=jcesdk. IBM
produces the unrestricted JCE files to permit eligible users to use strong encryption in the
Java environment.

http://www-03.ibm.com/systems/z/os/zos/tools/java/index.html
http://www-03.ibm.com/systems/z/os/zos/tools/java/index.html
http://www.bis.doc.gov/index.php/policy-guidance/encryption
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

When the download is complete, replace these files with the unlimited JCE files as outlined
on the IBM Java Security page (http://www-
03.ibm.com/systems/z/os/zos/tools/java/products/javasec.html#jsechw):

<JAVA_HOME>/lib/security/local_policy.jar
<JAVA_HOME>/lib/security/US_export_policy.jar
The <JAVA HOME> is the absolute path to the installation directory of Java SE.

Installing Key Maker

When you have prepared your Java environment in UNIX System Services, installing
PKWARE Key Maker is simply a matter of copying two JAR files provided in the Key Maker
install package to your system.

e PKKeyM.jar contains all the Key Maker program files. This file can be placed
anywhere. You must include the full path, such as /usr/bin/PKKeyM.jar, in your Key
Maker commands.

e Key Maker uses the Bouncy Castle API* to support various encryption algorithms
used by OpenPGP unavailable with other JCE providers, including CAST5. Place the
bcprov-jdk150n-150.jar in the JRE /lib/ext directory. This extension folder is part of
the IBM Java architecture and is recommended by IBM to extend core Java
capabilities.

After installing the key generation application, confirm that bcprov*.jar is installed in
the JRE /lib/ext directory. Note that if you have multiple side by side versions of Java
installed, copy the cryptographic provider JAR file to each instance of lib/ext only in
the Java installation(s) where you will use Key Maker.

The cryptographic APl supports Java 1.6 and above.
Additional files included with Key Maker are:

e This document, Getting Started with PKWARE Key Maker,
KeyMaker_GettingStarted_zOS.pdf

e PKWARE, Inc., Third-Party License Summary for PKWARE Key Maker,
ThirdPartyLicense.pdf

Generating OpenPGP Keys and Self-Signed X.509 Certificates

Key Maker is designed to operate from a command interface and can be easily used with shell
scripts, batch files and the ISPF interface in z/OS. See Chapter 6 of the SecureZIP Security
Administrator’'s Guide for sample jobs and ISPF configuration information.

generate

This command creates a new OpenPGP public/private key pair. If you specify an existing
OpenPGP keyring, Key Maker will attempt to add the new key to that ring.

! Portions of this software include technology from the Legion of the Bouncy Castle provided under the following
terms: THE [Bouncy Castle] SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/javasec.html%23jsechw

You can also create a self-signed X.509 certificate with this command.

Options
Option Description

-armor Use ASCII armor for a new OpenPGP output file.

-earmor Use this command to use EBCDIC ASCII Armor. Possible values are 0x0a,
0x0d, 0x15, and 0x25.

-email Email address for X.509 certificate creation. This email address will be
written as a subject alternative name extension within the certificate.

-expire Expiration period (in days) for the key or certificate being created. If this
option is not specified than the default expiration will be used. The default
option is dependent upon key type. Unless you include the expire option,
OpenPGP keys will not expire, and X.509 certificates will expire one year
from creation.

-hash Hash algorithm to use when signing X.509 certificates

-keySize Key length when generating new keys.

For RSA, possible values are 1024, 2048 (default) and 4096.

DSA will use the same values and defaults as RSA but they will apply to the
El Gamal encryption key — not the DSA signing key. The DSA signing key
will be fixed at 1024.

You can specify different lengths for signing and encryption keys in
OpenPGP by using (for example) —-keySize 1024/2048. The first value

represents the signing key size, the second is used for encryption. If you
only use one value, Key Maker will use that size for both key types.

-keyType <type>

Determines the type of key to create. Possible values for OpenPGP are RSA
(default) and DSA. Only value for X.509 is RSA.

-outPublicPGP <file>

Output file name for OpenPGP public key, used as primary output for
command to specify where the public key will be placed. This is a required
option.

-outSecretPGP <file>

Output file name for OpenPGP private (secret) key, used as primary output
for command to specify where the private key will be placed. This is a
required option.

-outPKCS7 <file>

Output file name for one or more X.509 certificates. Creates a PKCS#7
certificates-only message.

-outPKCS12 <file>

Output file name for an X.509 certificate and its private key.

-outCert <file>

Output file name for an X.509 certificate (without private key) in DER format.

-outPass <pw>

Output passphrase, used to protect generated private key. This is a required
option.

-singleKey Output a single OpenPGP signing and encryption key.

-subject Subject to be used in X.509 certificate creation. The subject string must
contain a valid X.500 name using known X.500 tokens for the various
values. This option is required when generating an X.509 certificate or
converting from OpenPGP to X.509.

-userid OpenPGP userid to be used in OpenPGP key creation or for locating an

OpenPGP key in a keyring. This is a required option. This value can contain
a name, email address and comment; for example: Tom
<tom@example.com>

Sample commands

In this and the other samples in this guide, replace <path> with the full path to the PKKeyM jar file,
such as /usr/bin/PKKeyM.jar.

Create new OpenPGP RSA keyring

Create new OpenPGP RSA public/private keyring using the default 2048 key size and no
expiration date.

java -jar <path> generate -outPublicPGP test.pkr -outSecretPGP test.skr -outPass password
-userid “User <user@example.com>"

Create new OpenPGP DSA keyring
Create new OpenPGP DSA public/private keyring using no-default values.

java -jar <path> generate -KeyType DSA -KeySize 2048 -outPublicPGP test.pkr -outSecretPGP
test.skr -outPass password -userid “User <user@example.com>"

Create new X.509 Certificate
Generate a new X.509 Certificate with 4096 key for John Doe which will expire in 1 year.

java -jar <path> generate -keySize 4096 -keyType RSA -subject "CN=John Doe" -email
john.doc@example.com -outPKCS12 cert.pl2 -outPass password

Converting Key Formats

convert
Converts keys between OpenPGP and X.509 formats. You can convert these types of keys:
e PKCS#12 to OpenPGP Public Ring
e PKCS#12 to OpenPGP Public and OpenPGP Secret Ring
e OpenPGP Secret Key to PKCS#12, PKCS#7 and/or X.509 certificate
e OpenPGP Public Key to PKCS#7 and/or X.509 certificate

Options
Option Description

-armor Use ASCII armor for a new OpenPGP output file.

-earmor Use this command to use EBCDIC ASCII Armor. Possible values are 0x0a,
0x0d, 0x15, and 0x25.

-expire Expiration period (in days) for the key being created. If this option is not
specified than the default expiration will be used. The default option is
dependent upon key type. Unless you include the expire option, OpenPGP
keys will not expire, and X.509 certificates will expire one year from creation.

-in <file> Input file name. This is a required option.

-inPass Input passphrase. This option can be used when converting a private
OpenPGP key to an X.509 certificate or converting from an X.509 certificate
and private key to OpenPGP. This is a required option.

-inType Indicates the input type to expect. Possible values: cert, pgp, pkcs7, and
pkcs12. This option is required when one -in is used.

Option Description

-keyID Used to identify a particular OpenPGP key by its unique key ID. This option
can be specified multiple times on the command line. You can use the
complete short or long version of the key ID with this option.

-outPublicPGP <file> Output file name for OpenPGP public keyring, used as primary output for
command to specify where the public key will be placed.

-outSecretPGP <file> Output file name for OpenPGP private (secret) keyring, used as primary
output for command to specify where the private key will be placed.

-outPKCS7 <file> Output file name for one or more X.509 certificates. Creates a PKCS#7
certificates-only message.

-OutPKCS12 <file> Output file name for an X.509 certificate and its private key.

-outCert <file> Output file name for an X.509 certificate (without private key) in DER format.

-outPass <pass> Output passphrase, used to protect generated private key. This is a required

option when the target includes a private key.

-userid OpenPGP userid to be used in OpenPGP key creation or for locating an
OpenPGP key in a keyring. This is a required option. This value can contain
a name, email address and comment; for example: Tom
<tom@example.com>. This option is required when converting an X.509
certificate to OpenPGP.

Sample commands

Convert PKCS#12 to OpenPGP Public/Private

Convert an X.509 certificate and private key in PKCS#12 file to a OpenPGP public/private
key ring.

java -jar <path> convert -inType pkcsl2 -in test.pl2 -inPass password -outPublicPGP test.pkr
-outSecretPGP test.skr -outPass changeit -userid “User <user@example.com>"

Convert PKCS#12 to OpenPGP Public Only

Convert an X.509 certificate with private key in a PKCS#12 file to a OpenPGP public key
ring.

java -jar <path> convert -inType pkcs12 -in test.pl2 -inPass password -outPublicPGP test.pkr
-userid “User <user@example.com>"

Convert OpenPGP Secret to PKCS#12

Convert an OpenPGP Secret Key identified by the key ID AFEAB87F932ACF4A to an X.509
format.

java -jar <path> convert -inType pgp -in test.skr -inPass password -keyID AFEAB87F932ACF4A
-outPKCS12 test.pl2 -outPass password -subject “CN=User” -email user@example.com

Convert an OpenPGP Secret Key for the userid “User” to an X.509 certificate.

java -jar <path> convert -inType pgp -in test.skr -inPass password -outPKCS12 test.pl2
-outPass password -userid “User <user@example.com>" -subject “CN=User” -email user@example.com

mailto:user@example.com

Signing OpenPGP Keys

sign

Establish trust relationships with other OpenPGP keys with the sign command.

Options
Option Description

-inPass Input passphrase. Use this option with -signwith to unlock the OpenPGP
secret key you are signing with.

-inPublicPGP <file> (Optional) Specify the public keyring location for the key(s) you want to sign.

-inSecretPGP <file> (Optional) Specify the private keyring location for the key(s) you want to
sign.

-keyID Identify a particular OpenPGP key to sign by its unique key ID. You must
identify a key by its keyID or userid. You can use the complete short or long
version of the key ID with this option. Sign multiple keys by specifying this
option multiple times on the command line.

-signwith Identify the OpenPGP secret key to sign the key with.

-userid Identify a particular OpenPGP userid to sign. You must identify a key by its
keylD or userid. The userid value can contain a name, email address and
comment; for example: Tom <tom@example.com>.

-multi Allow multiple keys to be selected.

-verbose Enable verbose output.

Sample command

Sign OpenPGP key 0x1234568 with OpenPGP key 0x87654321 where both are in the default
key rings.
java -jar <path> sign -signWith ©x87654321 -inPass <passphrase> -keyid ©x12345678

Copying OpenPGP Keys From An Existing Keyring

copy

Copies one or more keys from one OpenPGP keyring to another. Allows copying of a public
key(s) or a keyring to another public keyring, or copying of a secret key(s) or keyring to
another secret keyring. You can use this command to import and export keys and keyrings
from one location to another as well.

Options
Option Description
-armor Use ASCII armor for OpenPGP output file when the target keyring does not
yet exist.
-earmor Use this command to use EBCDIC ASCII Armor. Possible values are 0x0a,
0x0d, 0x15, and 0x25.

mailto:user@example.com

Option Description

-in <file> Input file name. This is a required option.

-keyID Used to identify a particular OpenPGP key by its unique key ID. This option
can be specified multiple times on the command line. Either -keyID or —
userid is required when selecting specific keys. You can use the complete
short or long version of the key ID with this option.

-outPublicPGP <file> Output file name for OpenPGP public key, used as primary output for
command to specify where the public key will be placed. This is a required
option.

-outSecretPGP <file> Output file name for OpenPGP private (secret) key, used as primary output
for command to specify where the private key will be placed. This is a
required option.

-userid <regex> OpenPGP userid to be used to locate an OpenPGP key in a keyring. This
value can contain a name, email address and comment; for example: Tom
<tom@example.com>. The <regex> parameter is a Java Regular
Expression. Java regular expressions are virtually identical to Perl. Either -
keylID or —userid is required when selecting specific keys.

Sample commands

Copy OpenPGP Public/Secret Keys

Copy a single OpenPGP public key from one OpenPGP public keyring to another. Only the
OpenPGP key that matches the specified key ID will be copied (multiple —keyID values can
be specified).

java -jar <path> copy -inType pgp -in source.pkr -outPublicPGP target.pkr -keyid
©85F4A9D5AA93E4D

Export all of the OpenPGP public keys from the Source public keyring, and import those
keys to the Target public keyring.

java -jar <path> copy -inType pgp -in source.pkr -outPublicPGP target.pkr

Copy all users in the example.com domain:

java -jar <path> copy -inType pgp -in source.pkr -outPublicPGP target.pkr -userid
" ¥¢, *@example.com>"

Getting Information About Keys In A Ring

list

Display information on keys within a key file

Options
Option Description
-expire <N> Expiration period (in days) for the key or certificate. Include this option if you want
to learn what keys will expire within the specified number <N> of days from today.
-in <file> Input file name
-inType Indicates the input type to expect. Values include PGP, CERT, PKCS7 and
PKCS12 (with -inPass).

mailto:user@example.com

Option Description

-keyID Used to identify a particular OpenPGP key by its unique key ID. This option can be
specified multiple times on the command line. Either -keyID or —userid is required
when selecting specific keys. You can use the complete short or long version of the
key ID with this option.

-sort Sort the list based on one of the default columns: Values include: none, create,
keyid, keysize, expire, userid

-userid OpenPGP userid to be used to locate an OpenPGP key in a keyring. This value
can contain a name, email address and comment; for example: Tom
<tom@example.com>. The <regex> parameter is a Java Regular Expression. Java
regular expressions are virtually identical to Perl. Either -keyID or —userid is
required when selecting specific keys.

-verbose Enable verbose output.
-withSig Include OpenPGP signatures in output
-withUserIDs Include OpenPGP userid in output

Identify info that is displayed for an OpenPGP key

e UserlID
e KeylID
o Key Type
o Key Size

e Date Created
e Expiration
e Thumbprint

e Signature, including signhature date, end date, keyid of creator, and name

Sample commands

List OpenPGP Public
List the OpenPGP keys within an OpenPGP public keyring.
java -jar <path> list -inType pgp -in test.pkr

List the PGP keys within a PGP public key ring that will expire within the next 120 days.

java -jar <path> list -inType pgp -in test.pkr -expire 120

List OpenPGP Secret
List the OpenPGP keys within an OpenPGP secret keyring.
java -jar <path> list -inType pgp test.skr

Working with OpenPGP Key Servers

You can use Key Maker to send a key to a public key server for others to use, or search for a public
key on a specified key server.

10

keyserver-send
Allow others to access your public OpenPGP key by placing the key on a public key server.

Options
Option Description

-keyServer URL to OpenPGP key server

-inPublicPGP <file> Specify the public keyring location for the key(s) you want to edit.

-keyID Used to identify a particular OpenPGP key by its unique key ID. This option
can be specified multiple times on the command line. Either -keyID or —
userid is required when selecting specific keys. You can use the complete
short or long version of the key ID with this option.

-multi Allow multiple keys to be selected.

-userid <regex> OpenPGP userid to be used to locate an OpenPGP key in a keyring. This
value can contain a name, email address and comment; for example: Tom
<tom@example.com>. The <regex> parameter is a Java Regular
Expression. Java regular expressions are virtually identical to Perl. Either -
keyID or —userid is required when selecting specific keys.

Sample command
Send an OpenPGP key to a key server.

java -jar <path> keyserver-send -keyServer http://sks.example.com -userid "Bob Smith"

keyserver-search

Locate an OpenPGP key on a key server with this command.

Options
Option Description

-keyServer URL to OpenPGP key server

-keyID Used to identify a particular OpenPGP key by its unique key ID. This option
can be specified multiple times on the command line. Either -keyID or —
userid is required when selecting specific keys. You can use the complete
short or long version of the key ID with this option.

-userid <regex> OpenPGP userid to be used to locate an OpenPGP key in a keyring. This
value can contain a name, email address and comment; for example: Tom
<tom@example.com>. The <regex> parameter is a Java Regular
Expression. Java regular expressions are virtually identical to Perl. Either -
keyID or —userid is required when selecting specific keys.

-verbose Enable verbose output

Sample commands

Search for an OpenPGP key that matches the specified email address.

java -jar <path> keyserver-search -keyServer http://sks.example.com -userid bob@example.com

mailto:user@example.com
mailto:user@example.com

Search for an OpenPGP key that matches the specified key ids.

java -jar <path>

keyserver-search -keyServer http://sks.example.com -keyid 0x12345678

Making Changes to OpenPGP Keys

edit

This command allows you to perform several types of actions on OpenPGP keys, including:

Disable: Temporarily stop using a particular OpenPGP key to encrypt an archive
Enable: Restore a previously disabled key

addUser1D: Attach an additional userlID to a key to make it easier to identify in your

scripts

e removeUserID: Remove a userlID label from a key

e removeSig: Withdraw your signature from a specified key

e trust: Define a level of trust when you sign a key

Options

Option

Description

-inPublicPGP <file>

Specify the public keyring location for the key(s) you want to edit.

-inSecretPGP <file>

(Optional) Specify the private keyring location for the key(s) you want to edit.

-keyID Used to identify a particular OpenPGP key by its unique key ID. This option
can be specified multiple times on the command line. Either -keyID or
—userid is required when selecting specific keys. You can use the complete
short or long version of the key ID with this option.

-multi Allow multiple keys to be selected.

-userid <regex>

OpenPGP userid to be used to locate an OpenPGP key in a keyring. This
value can contain a name, email address and comment; for example: Tom
<tom@example.com>. The <regex> parameter is a Java Regular
Expression. Java regular expressions are virtually identical to Perl. Either
-keyID or —userid is required when selecting specific keys.

-addUserID Specify an additional userID for an OpenPGP key. This value can contain a
name, email address and comment; for example: Tom
<tom@example.com>.

-disable Temporarily stop using a specific key or keys for encryption operations.

-enable Resume using disabled key(s) for encryption.

-removeSig <keyID >

Remove a signature from an OpenPGP key.

-removeUserID

Remove a specific UserID from an OpenPGP key

-trust <level>

Set the level of trust you have in a specified (using inPublicPGP or

inSecretPGP) public or private key. Values: none, marginal, complete,
implicit

12

mailto:user@example.com
mailto:user@example.com

Sample commands

Disable OpenPGP key id 0x12345678 in the default OpenPGP key rings.
java -jar <path> edit -keyid 0x12345678 -disable

Add a new userid to an OpenPGP key in the default key ring

java -jar <path> edit -userid "John Doe" -addUserID "John Doe <john.doe2@example.com>"

Remove all signatures signed by OpenPGP key id 0x12345678 from all keys containing
example.com

java -jar <path> edit -removeSig ©x12345678 -userid example.com

Set the trust level for a private and public key pair to Complete

java -jar <path> edit -trust -complete -userID “John Doe” —inPublicPGP target.pkr
—inSecretPGP target.skr

When performing operations such as setting Trust on public and private key pairs, make sure that the
keyring files match, as in the above sample.

Deleting Keys From A Ring

delete

Removes one or more OpenPGP keys from a keyring.

Options
Option Description
-in <file> Input file name
-keyID Used to identify a particular OpenPGP key by its unique key ID. This option can be
specified multiple times on the command line. You can use the complete short or
long version of the key ID with this option. Either -keyID or —userid is required.
-multi Allow multiple keys to be identified and selected for deletion

-userid <regex> OpenPGP userid to be used to locate an OpenPGP key in a keyring. This value
can contain a name, email address and comment; for example: Tom
<tom@example.com>. The <regex> parameter is a Java Regular Expression. Java
regular expressions are virtually identical to Perl. Either -keyID or —userid is
required.

CAUTION: The delete command is not interactive, you will not be asked to confirm the keys to delete.
Take care not to remove wanted keys with regular expressions.

Sample commands

Delete the specified OpenPGP key from the OpenPGP public and secret keyrings.
java -jar <path> delete -inType pgp -in source.skr -keyid ©85F4A9D5AA93E4D

13

mailto:user@example.com

Delete all OpenPGP keys that contain ‘example.com’ in the userid from the keyring.

java -jar <path> delete -in pubring.pkr -userid example.com -multi

Displaying Help Information

help
Display program help screen showing information on commands and options available.
java -jar <path> help

To see appropriate syntax, options and examples for a command, add -help to that
command.

java -jar <path> <command> -help

Displaying Key Maker Version Information

version

Display program version information.

java -jar <path> version

Return Codes

A completion code dependent on the results of the processing that was carried out will be
issued. The completion code can take the following values:

0 Processing has completed without errors being detected.

4 A warning message has been output but processing has continued.

8 An error has occurred during processing; refer to the error messages for more
details.

12 A syntax error or configuration setup error was encountered. The command
and/or combination of commands should be reviewed. The error can include
inappropriate processing when attempting to locate digital keys for encryption or
authentication functions.

The final completion code issued is the maximum value of the conditions found during the
sum. A return code greater than zero indicates that there are warning or error messages in
the job output.

User Help and Contact Information

For licensing, please contact Sales at 937-847-2374 (888-4PKWARE / 888-475-9273) or
email pksales@pkware.com.

For technical assistance, contact Technical Support at 937-847-2687 or visit the support
web site: http://www.pkware.com/support

For support for Linux on System Z, visit http://www.pkware.com/support/linux-on-system-
z-support.

14

mailto:pksales@pkware.com
http://www.pkware.com/support
http://www.pkware.com/support/linux-on-system-z-support
http://www.pkware.com/support/linux-on-system-z-support

	Welcome to PKWARE Key Maker
	Introduction to OpenPGP
	Preparing To Install Key Maker On z/OS
	Strong Cryptography in Java

	Installing Key Maker
	Generating OpenPGP Keys and Self-Signed X.509 Certificates
	generate
	 Options
	Sample commands

	Converting Key Formats
	convert
	Options
	Sample commands

	Signing OpenPGP Keys
	sign
	Options
	Sample command

	Copying OpenPGP Keys From An Existing Keyring
	copy
	Options
	Sample commands

	Getting Information About Keys In A Ring
	list
	Options
	Identify info that is displayed for an OpenPGP key
	Sample commands

	Working with OpenPGP Key Servers
	keyserver-send
	Options
	Sample command
	keyserver-search
	Options
	Sample commands

	Making Changes to OpenPGP Keys
	edit
	Options
	Sample commands

	Deleting Keys From A Ring
	delete
	 Options
	Sample commands

	Displaying Help Information
	help

	Displaying Key Maker Version Information
	version

	Return Codes
	User Help and Contact Information

